Viviani, Vincenzo, De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei

Table of contents

< >
[141.] THEOR. XXIX. PROP. LIIX.
[142.] ALITER.
[143.] THEOR. XXX. PROP. LIX.
[144.] THEOR. XXXI. PROP. LX.
[145.] THEOR. XXXII. PROP. LXI.
[146.] THEOR. XXXIII. PROP. LXII.
[147.] SCHOLIVM.
[148.] THEOR. XXXIV. PROP. LXIII.
[149.] THEOR. XXXV. PROP. LXIV.
[150.] PROBL. XXIV. PROP. LXV.
[151.] LEMMA VII. PROP. LXVI.
[152.] SCHOLIVM.
[153.] PROBL. XXV. PROP. LXVII.
[154.] MONITVM.
[155.] PROBL. XXVI. PROP. LXVIII.
[156.] PROBL. XXVII. PROP. LXIX.
[157.] PROBL. XXVIII. PROP. LXX.
[158.] LEMMA VIII. PROP. LXXI.
[159.] LEMMA IX. PROP. LXXII.
[160.] PROBL. XXIX. PROP. LXXIII.
[161.] LEMMA X. PROP. LXXIV.
[162.] PROBL. XXX. PROP. LXXV.
[163.] COROLL. I.
[164.] COROLL. II.
[165.] MONITVM.
[166.] THEOR. XXXVI. PROP. LXXVI.
[167.] SCHOLIVM.
[168.] THEOR. XXXVII. PROP. LXXVII.
[169.] PROBL. XXXI. PROP. LXXVIII.
[170.] MONITVM.
< >
page |< < (105) of 347 > >|
129105 recta AE vtranque ſectionem contingat. Dico ſectionem ADC, cuius ver-
tex D eſt infra alterius verticem B, totam cadere intra ſectionem ABC, hoc
eſt ei eſſe inſcriptam, &
in extremis A, C, ſe mutuò contingere.
Nam producta AE vſque ad occurſum cum diametro in E (ſi tamen ap-
plicata AC non fuerit diameter circuli, vel Ellipſis, vt ſecunda figura, quo
1127. ſec.
conic. &
6. eiuſd.
in caſu contingentes AE, CE ſibi ipſis, &
coniugatæ diametro BT æquidi- ſtabunt) iungatur ECO, quæ item vtranque ſectionem continget in C: & 2259. h. applicetur quæcunque L O. _lo_ eaſdem ſectiones ſecans in I, N, G, M. _i, n,_
_g, m_, contingentes verò in L, O.
_l, o_; ducanturque ex verticibus tangentes
BQ, DP, quę ordinatim ductis æquidiſtabunt, &
iungatur AB, ſecans DP
in S.
Iam cum ſit AH æqualis H C, erit LF. _l f_ æqualis F O. _f o_, eſtque IF. _if_
æqualis FN.
_fn_, & GF. _gf_, ipſi FM. _fm_ (ſunt enim ſectionum ſemi-appli-
catæ) quare reliquæ LI.
_li_, ON. _on_, æquales erunt, itemque LG. _lg_, OM.
_o m_ inter ſe æquales, ideoque rectangulum OIL. _oil_ æquabitur rectangulo
NLI.
_nli_, & rectangulum OGL. _ogl_ rectangulo MLG. _mlg_. Et cum in ſe-
3316. tertij
conic.
ctione ABC ſit quadratum BQ ad quadratum QA, hoc eſt quadratum SP ad PA, vt rectangulum NLI.
_nli_ ad quadratum L A. _l_A, & in ſectione
44ibidem. ADC quadratum DP ad idem PA ſit vt rectangulum MLG.
_mlg_ ad idem quadratum L A. _l_A, habeatque quadratum SP ad PA minorem rationem
quàm DP quadratum, ad idem quadratum PA, habebit quoque rectangu-
lum NLI.
_nli_ ad quadratum LA. _l_A minorem rationem quàm rectangulum
MLG.
_mlg_ ad idem quadratum LA. _l_A; quare rectangulum NLI. _nli_, hoc
eſt OIL.
_oil_, minus eſt rectangulo MLG. _mlg_, ſiue rectangulo OGL. _ogl_;
55conuerſ.
60. h.
vnde punctum I remotius eſt ab ipſo F quàm pũctum G.
_g_, ſed I. _i_ eſt in ipſa ſectione ABC; quare punctum G. _g_ ſectionis ADC cadet intra ABC, & ſic
de quolibet alio puncto ſectionis SADCT, præter A, C:
vnde ipſa ADC in-
ſcripta erit ſectioni ABC, &
in punctis tantùm A, C extremis eiuſdem ap-
plicatæ ſe mutuò contingent.
Quod erat deinonſtrandum.
THEOR. XXXIII. PROP. LXII.
Siextrema inæqualium baſium menſalis, cuiuſcunque coni- ſe-
ctionis, vel circuli, ad vtranque diametri partem rectis lineis iun-
gantur, ipſæ ſimul, &
in eodem diametri puncto conuenient, à
quo, ſi ad terminos ordinatim ductæ per interſectionem diagona-
lis cum diametro, ducantur aliæ rectæ lineæ, hæ omnino ſectionem
contingent.
SIt menſalis coni-ſectionis, vel circuli ABCD, cuius baſis, AD maior,
BC minor, diameter E F.
Dico ſi iungantur AB, DC, ipſas cum dia-
metro, &
in eodem puncto conuenire, ac ducta diagonali AC ſecant dia-
metrum in G, &
applicata LGM, ſi per extrema puncta L, M, ad prędictum
occurſum ducantur rectæ, ipſas ſectionem contingere.
Cum ſit enim AF maior BE, & ipſi parallela, occurret AB cum FE ad par-
6622. pri-
mi conic.
tes B, E, vt in H;
itemq; DC cum eadem FE, vt in I, vtraque verò extra

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index