Newton, Isaac, Philosophia naturalis principia mathematica, 1713

Page concordance

< >
Scan Original
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/131.jpg" pagenum="103"/>
                  noſcatur quantitas areæ abſcindendæ tempori proportionalis. </s>
                  <s>Sit ea
                    <lb/>
                    <arrow.to.target n="note79"/>
                  A, & fiat conjectura de poſitione rectæ
                    <emph type="italics"/>
                  SP,
                    <emph.end type="italics"/>
                  quæ aream
                    <emph type="italics"/>
                  APS
                    <emph.end type="italics"/>
                    <lb/>
                  abſcindat veræ proximam. </s>
                  <s>Jun­
                    <lb/>
                    <figure id="id.039.01.131.1.jpg" xlink:href="039/01/131/1.jpg" number="77"/>
                    <lb/>
                  gatur
                    <emph type="italics"/>
                  OP,
                    <emph.end type="italics"/>
                  & ab
                    <emph type="italics"/>
                  A
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  ad
                    <lb/>
                  Aſymptoton agantur
                    <emph type="italics"/>
                  AI, PK
                    <emph.end type="italics"/>
                    <lb/>
                  Aſymptoto alteri parallelæ, & per
                    <lb/>
                  Tabulam Logarithmorum dabi­
                    <lb/>
                  tur Area
                    <emph type="italics"/>
                  AIKP,
                    <emph.end type="italics"/>
                  eique æqualis
                    <lb/>
                  area
                    <emph type="italics"/>
                  OPA,
                    <emph.end type="italics"/>
                  quæ ſubducta de tri­
                    <lb/>
                  angulo
                    <emph type="italics"/>
                  OPS
                    <emph.end type="italics"/>
                  relinquet aream ab­
                    <lb/>
                  ſciſſam
                    <emph type="italics"/>
                  APS.
                    <emph.end type="italics"/>
                  Applicando areæ
                    <lb/>
                  abſcindendæ A & abſciſſæ
                    <emph type="italics"/>
                  APS
                    <emph.end type="italics"/>
                    <lb/>
                  differentiam duplam 2
                    <emph type="italics"/>
                  APS
                    <emph.end type="italics"/>
                  -2 A
                    <lb/>
                  vel 2 A-2
                    <emph type="italics"/>
                  APS
                    <emph.end type="italics"/>
                  ad lineam
                    <emph type="italics"/>
                  SN,
                    <emph.end type="italics"/>
                  quæ ab umbilico
                    <emph type="italics"/>
                  S
                    <emph.end type="italics"/>
                  in tangentem
                    <lb/>
                    <emph type="italics"/>
                  PT
                    <emph.end type="italics"/>
                  perpendicularis eſt, orietur longitudo chordæ
                    <emph type="italics"/>
                    <expan abbr="Pq.">Pque</expan>
                    <emph.end type="italics"/>
                  Inſcri­
                    <lb/>
                  batur autem chorda illa
                    <emph type="italics"/>
                  PQ
                    <emph.end type="italics"/>
                  inter
                    <emph type="italics"/>
                  A
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  P,
                    <emph.end type="italics"/>
                  ſi area abſciſſa
                    <emph type="italics"/>
                  APS
                    <emph.end type="italics"/>
                    <lb/>
                  major ſit area abſcindenda A, ſecus ad puncti
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  contrarias partes:
                    <lb/>
                  & punctum
                    <emph type="italics"/>
                  Q
                    <emph.end type="italics"/>
                  erit locus corporis accuratior. </s>
                  <s>Et computatione
                    <lb/>
                  repetita invenietur idem accuratior in perpetuum. </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note79"/>
                  LIBER
                    <lb/>
                  PRIMUS.</s>
                </p>
                <p type="main">
                  <s>Atque his calculis Problema generaliter confit Analytice. </s>
                  <s>Ve­
                    <lb/>
                  rum uſibus Aſtronomicis accommodatior eſt calculus particularis
                    <lb/>
                  qui ſequitur. </s>
                  <s>Exiſtentibus
                    <emph type="italics"/>
                  AO, OB, OD
                    <emph.end type="italics"/>
                  ſemiaxibus Ellipſeos, &
                    <lb/>
                  L ipſius latere recto, ac D differentia inter ſemiaxem minorem
                    <emph type="italics"/>
                  OD
                    <emph.end type="italics"/>
                    <lb/>
                  & lateris recti ſemiſſem 1/2 L; quære tum angulum Y, cujus ſinus
                    <lb/>
                  ſit ad Radium ut eſt rectangu­
                    <lb/>
                    <figure id="id.039.01.131.2.jpg" xlink:href="039/01/131/2.jpg" number="78"/>
                    <lb/>
                  lum ſub differentia illa D, &
                    <lb/>
                  ſemiſumma axium
                    <emph type="italics"/>
                  AO+OD
                    <emph.end type="italics"/>
                    <lb/>
                  ad quadratum axis majoris
                    <emph type="italics"/>
                  AB
                    <emph.end type="italics"/>
                  ;
                    <lb/>
                  tum angulum Z, cujus ſinus
                    <lb/>
                  ſit ad Radium ut eſt duplum
                    <lb/>
                  rectangulum ſub umbilieorum
                    <lb/>
                  diſtantia
                    <emph type="italics"/>
                  SH
                    <emph.end type="italics"/>
                  & differentia
                    <lb/>
                  illa D ad triplum quadratum
                    <lb/>
                  ſemiaxis majoris
                    <emph type="italics"/>
                  AO.
                    <emph.end type="italics"/>
                  His
                    <lb/>
                  angulis ſemel inventis; locus corporis ſic deinceps determinabitur. </s>
                  <s>
                    <lb/>
                  Sume angulum T proportionalem tempori quo arcus
                    <emph type="italics"/>
                  BP
                    <emph.end type="italics"/>
                  deſcrip­
                    <lb/>
                  tus eſt, ſcu motui medio (ut loquuntur) æqualem; & angulum
                    <lb/>
                  V (primam medii motus æquationem) ad angulum Y (æquatio­
                    <lb/>
                  nem maximam primam) ut eſt ſinus dupli anguli T ad Radium; </s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>