Clavius, Christoph, In Sphaeram Ioannis de Sacro Bosco commentarius

Page concordance

< >
Scan Original
121 84
122 85
123 86
124 87
125 88
126 89
127 90
128 91
129 92
130 93
131 94
132 95
133 96
134 97
135 98
136 99
137 100
138 101
139 102
140 103
141 104
142 105
143 106
144 107
145 108
146 109
147 110
148 111
149 112
150 113
< >
page |< < (95) of 525 > >|
13295Ioan. de Sacro Boſco. @o æqualia habentium maxima & æquilatera eſt, & æquiangula. quod demon-
ſtrandum erat.
SCHOLIVM.
Circa demonſtrationem prioris partis huius propoſ. obſeruandum efl, acci-
11Quæ obſer-
uanda ſint
in demon-
ſtratiõe hu-
ius propoſ.
pienda eſſe duo latrea inęqualia proxima inter ſe, ita vt angulum conſtituant, nul-
lumq́ue aliud inter ea interponatur, qualia ſunt latera accepta A B, B C, angulum
B, efficientia.
Hac enim ratione, ducta recta A C, factum erit triangulum A B C,
cuius duo latera A B, B C, inæquælia ſunt, vt in demonſtratione aſſumebatur.
Ne
que vero dubitare quis poterit, in figuranon æquilatera, qualis ponitur A B C
D E F, accipi poſſe duo latera proxima inæqualia.
Nam ſi quis dicat latera A B,
B C, eſſe æqualia, ſumemus latera A B, A F, quæ ſi dicantur etiam æqualia eſſe,
accipiemus A F, F E:
Et ſi hęc adhuc æqualia eſſe dicantur, capiemus E F, E D: & ſic de-
inceps progrediemur, donec ad duo latera proxima inæqualia ueniamus, quæ angulum
Conſtituant.
Neceſſarium autem ad duo huiuſmodi latera perueniemus: aliàs figura eſ-
ſet æquilatera, quod non conceditur.
Qvod vero ad poſterioris partis demonſtrationem attinet, aduertendum eſt,
in figuris multilateris accipiendos eſſe duos angulos inæquales non proximos inter ſe
ita vt inter ipſos vnus vel plures anguli interponantur, quales ſunt anguli accepti
B, D, inter quos ponitur angulus C.
Hac enim ratione duæ rectæ A C, C E, dictos
augulos ſubtendentes ſe mutuo non interſecabunt, conſtituenturq́ue duæ figuræ A C-
C D E F, A G C H E F, ex additione communis figuræ A C E E, ad triangula ſu-
pra baſes AC, C E, conſiructa:
quod non contingeret, ſi duo anguli inæquales pro-
ximi inter ſe ſumerentur, vt conſtat.
Non eſt autem in dubinm vertendum, an ta-
les duo anguli poſſint accipi.
In omni enim figura multilatera non æquiangula ne-
ceſſario erunt aliqui duo anguli non proximi inter ſe inæquales.
Nam in propoſitæ
figura A B k D E F, comparabimus angulum B, cum omnibus non proximis angulis
D, E, F, qui neceſſario duo erunt in pentagono, in hexagono uero tres, &
ita dein-
ceps.
Quod ſi uni alicui eorum fuerit inæqualis, habebimus iam duos angulos non
proximos inter ſe inæquales, nempe angulum B, &
illum, cui inæqualis eſt: Si vero
omnibus dicatur æqualis, erit tunc angulus B, ſaltem alteri proximorum inæqualis,
aliàs figura eßet æquiangula.
Si ergo inæqualis fuerit angulo A, erit angulus A,
tam angulo E, quàm angulo D, non proximo inæqualis, cum utriuis horum æqualis
ponatur angulus B:
Si uero inæqualis fuerit angulo C, erit angulus K, tam angule
E, quàm angulo F, non proximo inæqualis, quòd vtrius horum angulus B, ponatur
æqualis.
Sed quoniam propoſitio hæc demonſtrata tantum eſt in figuris multilateris, vt
ex ijsconſiat, quæ proxi-
33[Figure 33] me de duobus angulis non
proximis inæqualibus di-
ximus:
In triangulis enim,
&
quadrilateris figuris
æquilateris anguli eiuſmo-
di reperiri non poſſunt,
cum in triangulis æquila-
teris omnes anguli ſint æ-
quales, vt ex coroll.
ꝓpoſ.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index