Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
141
(117)
142
(118)
143
(119)
144
(120)
145
(121)
146
(122)
147
(123)
148
(124)
149
(125)
150
(126)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
page
|<
<
(108)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div348
"
type
="
section
"
level
="
1
"
n
="
149
">
<
p
>
<
s
xml:id
="
echoid-s3625
"
xml:space
="
preserve
">
<
pb
o
="
108
"
file
="
0132
"
n
="
132
"
rhead
="
"/>
Dico Ellipſim ETF vertici B propiorem, minorem eſſe Ellipſi DVE ab ipſo
<
lb
/>
vertice remotiori.</
s
>
<
s
xml:id
="
echoid-s3626
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3627
"
xml:space
="
preserve
">Applicata enim ADC; </
s
>
<
s
xml:id
="
echoid-s3628
"
xml:space
="
preserve
">eſt DH
<
lb
/>
<
figure
xlink:label
="
fig-0132-01
"
xlink:href
="
fig-0132-01a
"
number
="
97
">
<
image
file
="
0132-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0132-01
"/>
</
figure
>
<
note
symbol
="
a
"
position
="
left
"
xlink:label
="
note-0132-01
"
xlink:href
="
note-0132-01a
"
xml:space
="
preserve
">32. vel
<
lb
/>
63. huius.</
note
>
ad HE, vt AD, ad EG, ſed eſt AD maior EG, quare & </
s
>
<
s
xml:id
="
echoid-s3629
"
xml:space
="
preserve
">DH erit
<
lb
/>
maior HE, eademq; </
s
>
<
s
xml:id
="
echoid-s3630
"
xml:space
="
preserve
">ratione EM
<
lb
/>
maior MF, vnde harum Ellipſiũ
<
lb
/>
centra cadent infra H, & </
s
>
<
s
xml:id
="
echoid-s3631
"
xml:space
="
preserve
">M, vt
<
lb
/>
in O, & </
s
>
<
s
xml:id
="
echoid-s3632
"
xml:space
="
preserve
">O, ex quibus applicatis
<
lb
/>
OP, QR Ellipſium ſemi-diame-
<
lb
/>
tris coniugatis, productaque QR
<
lb
/>
vſque ad ſectionem in S, cum in
<
lb
/>
Ellipſi DVE ſit OP maior
<
note
symbol
="
b
"
position
="
left
"
xlink:label
="
note-0132-02
"
xlink:href
="
note-0132-02a
"
xml:space
="
preserve
">63. h.</
note
>
& </
s
>
<
s
xml:id
="
echoid-s3633
"
xml:space
="
preserve
">in angulo, vel ſectione ABC
<
lb
/>
ſit HV maior QS, & </
s
>
<
s
xml:id
="
echoid-s3634
"
xml:space
="
preserve
">QS
<
note
symbol
="
c
"
position
="
left
"
xlink:label
="
note-0132-03
"
xlink:href
="
note-0132-03a
"
xml:space
="
preserve
">32. h.</
note
>
QR, eò magis OP erit maior QR, & </
s
>
<
s
xml:id
="
echoid-s3635
"
xml:space
="
preserve
">duplum duplo maios, hoc eſt Ellipſis
<
lb
/>
DVE coniugata diameter, maior coniugata diametro Ellipſis ETF, ſed trãſ-
<
lb
/>
uerſa latera ED, EF ſunt æqualia, vnde & </
s
>
<
s
xml:id
="
echoid-s3636
"
xml:space
="
preserve
">latus rectum Ellipſis DVE maios
<
lb
/>
recto ETF, ſuntque huiuſmodi Ellipſes æqualiter inclinatæ cum eidem ſe-
<
lb
/>
ctioni ſint ſimul adſcriptæ: </
s
>
<
s
xml:id
="
echoid-s3637
"
xml:space
="
preserve
">quare Ellipſis DVE, maius habens rectum latus,
<
lb
/>
maior erit ETF minoris recti lateris, quę dati anguli, vel ſectionis
<
note
symbol
="
d
"
position
="
left
"
xlink:label
="
note-0132-04
"
xlink:href
="
note-0132-04a
"
xml:space
="
preserve
">2. Co-
<
lb
/>
roll. 19. h.</
note
>
propior eſt. </
s
>
<
s
xml:id
="
echoid-s3638
"
xml:space
="
preserve
">Quod erat demonſtrandum.</
s
>
<
s
xml:id
="
echoid-s3639
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div350
"
type
="
section
"
level
="
1
"
n
="
150
">
<
head
xml:id
="
echoid-head155
"
xml:space
="
preserve
">PROBL. XXIV. PROP. LXV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3640
"
xml:space
="
preserve
">Per datum punctum in axe dati anguli rectilinei MAXIMVM
<
lb
/>
circulum inſcribere & </
s
>
<
s
xml:id
="
echoid-s3641
"
xml:space
="
preserve
">è contra.</
s
>
<
s
xml:id
="
echoid-s3642
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3643
"
xml:space
="
preserve
">SIt datus angulus rectilineus ABC, cuius axis, ſiue linea ipſum bifariam
<
lb
/>
ſecans ſit BD, in quo datum ſit punctum E, per quod oporteat _MAXI_-
<
lb
/>
_MVM_ circulum inſcribere.</
s
>
<
s
xml:id
="
echoid-s3644
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3645
"
xml:space
="
preserve
">Ducatur ex E ſuper axim BD perpendicularis
<
lb
/>
<
figure
xlink:label
="
fig-0132-02
"
xlink:href
="
fig-0132-02a
"
number
="
98
">
<
image
file
="
0132-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0132-02
"/>
</
figure
>
EF, cui infra F ſumatur FA æqualis, & </
s
>
<
s
xml:id
="
echoid-s3646
"
xml:space
="
preserve
">ex A eri-
<
lb
/>
gatur AD perpendicularis ad BA, quæ axi oc-
<
lb
/>
curret in D (cum angulus ABD ſit omnino acu-
<
lb
/>
tus, & </
s
>
<
s
xml:id
="
echoid-s3647
"
xml:space
="
preserve
">BAD rectus, hoc eſt ſimul ſumpti minores
<
lb
/>
duobus rectis). </
s
>
<
s
xml:id
="
echoid-s3648
"
xml:space
="
preserve
">Dico punctum D eſſe centrum
<
lb
/>
quæſiti circuli. </
s
>
<
s
xml:id
="
echoid-s3649
"
xml:space
="
preserve
">Nam iuncta AE; </
s
>
<
s
xml:id
="
echoid-s3650
"
xml:space
="
preserve
">cum ſint FA,
<
lb
/>
FE inter ſe æquales, erunt anguli ad baſim AE æ-
<
lb
/>
quales, ſed toti FED, FAD æquales ſunt, cum
<
lb
/>
ſint recti, vnde reliqui DEA, DAE æquales erũt,
<
lb
/>
ſiue latus DE ipſi DA æqualle. </
s
>
<
s
xml:id
="
echoid-s3651
"
xml:space
="
preserve
">Ductaque DC
<
lb
/>
perpendiculari ad BC; </
s
>
<
s
xml:id
="
echoid-s3652
"
xml:space
="
preserve
">in triangulis DBA, DBC
<
lb
/>
ſunt anguli ad B, & </
s
>
<
s
xml:id
="
echoid-s3653
"
xml:space
="
preserve
">ad A, & </
s
>
<
s
xml:id
="
echoid-s3654
"
xml:space
="
preserve
">C æquales inter ſe,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3655
"
xml:space
="
preserve
">latus BD commune, ergo, & </
s
>
<
s
xml:id
="
echoid-s3656
"
xml:space
="
preserve
">DC ipſi DA, ſiue DE, ęqualis erit: </
s
>
<
s
xml:id
="
echoid-s3657
"
xml:space
="
preserve
">quapro-
<
lb
/>
pter ſi cum centro D, interuallo DA circulus deſcribatur, ipſæ per puncta E,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3658
"
xml:space
="
preserve
">C tranſibit, eritque angulo ABC inſcrintus. </
s
>
<
s
xml:id
="
echoid-s3659
"
xml:space
="
preserve
">cum obrectos angulos ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>