Bernoulli, Daniel, Hydrodynamica, sive De viribus et motibus fluidorum commentarii

Page concordance

< >
Scan Original
131 117
132 118
133 119
134 120
135 121
136 122
137 123
138
139 125
140 126
141 127
142 128
143 129
144 130
145 131
146 132
147 133
148 134
149 135
150 136
151 137
152 138
153 139
154 140
155 141
156 142
157
158 144
159 145
160 146
< >
page |< < (119) of 361 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div135" type="section" level="1" n="105">
          <pb o="119" file="0133" n="133" rhead="SECTIO SEXTA."/>
        </div>
        <div xml:id="echoid-div136" type="section" level="1" n="106">
          <head xml:id="echoid-head136" xml:space="preserve">Corollarium. 1.</head>
          <p>
            <s xml:id="echoid-s3415" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3416" xml:space="preserve">14. </s>
            <s xml:id="echoid-s3417" xml:space="preserve">Si ponatur canalis c A d ejuſdem amplitudinis cum tubis con-
              <lb/>
            junctis, ejuſque longitudo vocetur l, erit maſſa aquæ in eo contentæ, quam
              <lb/>
            vocavimus M = gl; </s>
            <s xml:id="echoid-s3418" xml:space="preserve">& </s>
            <s xml:id="echoid-s3419" xml:space="preserve">aſcenſuspotent. </s>
            <s xml:id="echoid-s3420" xml:space="preserve">aquæ in illo contentæ, quem poſuimus =
              <lb/>
            N v, erit = v, ita ut habeatur N = 1. </s>
            <s xml:id="echoid-s3421" xml:space="preserve">Subſtitutis autem, iſtis valoribus pro
              <lb/>
            litteris M & </s>
            <s xml:id="echoid-s3422" xml:space="preserve">N, prodit longitudo penduli tautochroni pro iſto caſu particulari =
              <lb/>
            {aaα + aαα + aαl/αb + aβ} = {aα/αb + aβ} X (a + α + l) = {a + α + l/{b/a} + {β/α}</s>
          </p>
          <p>
            <s xml:id="echoid-s3423" xml:space="preserve">Quia vero a + α + l eſt longitudo totius tractus aqua pleni & </s>
            <s xml:id="echoid-s3424" xml:space="preserve">{b/a} ſigni-
              <lb/>
            ficat rationem ſinus anguli bac ad ſinum totum pariter atque {β/α} denotat ra-
              <lb/>
            tionem ſinus anguli efd ad ſinum totum, videmus non differre noſtram ſo-
              <lb/>
            lutionem ab illa, quam Pater meus pro iſto caſu dedit, quamque ſupra
              <lb/>
            recenſui §. </s>
            <s xml:id="echoid-s3425" xml:space="preserve">4.</s>
            <s xml:id="echoid-s3426" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div137" type="section" level="1" n="107">
          <head xml:id="echoid-head137" xml:space="preserve">Corollarium 2.</head>
          <p>
            <s xml:id="echoid-s3427" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3428" xml:space="preserve">15. </s>
            <s xml:id="echoid-s3429" xml:space="preserve">Si ponatur canalis c A d infinitæ ubique amplitudinis, erit
              <lb/>
            MN = o (per §. </s>
            <s xml:id="echoid-s3430" xml:space="preserve">2. </s>
            <s xml:id="echoid-s3431" xml:space="preserve">ſect. </s>
            <s xml:id="echoid-s3432" xml:space="preserve">3.) </s>
            <s xml:id="echoid-s3433" xml:space="preserve">& </s>
            <s xml:id="echoid-s3434" xml:space="preserve">longitudo penduli tantochroni = {a + α/{b/a} + {β/α}}, qua-
              <lb/>
            ſi nempe totus canalis intermedius c A d abeſſet, tubique cylindrici inter ſe
              <lb/>
            immediate eſſent conjuncti.</s>
            <s xml:id="echoid-s3435" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3436" xml:space="preserve">Eſt tamen hîc ſpeciale aliquid conſiderandum, quod infra monebo.</s>
            <s xml:id="echoid-s3437" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div138" type="section" level="1" n="108">
          <head xml:id="echoid-head138" xml:space="preserve">Scholion.</head>
          <p>
            <s xml:id="echoid-s3438" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3439" xml:space="preserve">16. </s>
            <s xml:id="echoid-s3440" xml:space="preserve">Complectitur hoc theorema omnes caſus, qui oſcillationes tan-
              <lb/>
            tochronas faciunt, ubi tubi a c & </s>
            <s xml:id="echoid-s3441" xml:space="preserve">p d ſunt recti: </s>
            <s xml:id="echoid-s3442" xml:space="preserve">cum vero hi tubi, in qui-
              <lb/>
            bus fluidi ſuperficies excurrunt, incurvati ſunt, dantur alii inſuper tanto-
              <lb/>
            chronismi caſus, quos facile foret determinare, ſi hiſce diutius immorari
              <lb/>
            vellemus. </s>
            <s xml:id="echoid-s3443" xml:space="preserve">Cæterum cum tubi hi inæqualis amplitudinis ſunt, fiunt quoque
              <lb/>
            tempora oſcillationbus diverſarum magnitudinum reſpondentia inæqualia,
              <lb/>
            & </s>
            <s xml:id="echoid-s3444" xml:space="preserve">quomodo tempus tale definiri debeat unicuique apparet ex §. </s>
            <s xml:id="echoid-s3445" xml:space="preserve">8. </s>
            <s xml:id="echoid-s3446" xml:space="preserve">ubi velo-
              <lb/>
            citatem fiuidi in quolibet puncto dedimus.</s>
            <s xml:id="echoid-s3447" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>