Clavius, Christoph, In Sphaeram Ioannis de Sacro Bosco commentarius

Table of contents

< >
[81.] THEOR. 7. PROPOS. 8.
[82.] THEOR. 8. PROPOS. 9.
[83.] PROBL. 2. PROPOS. 10.
[84.] THEOR. 9. PROPOS. 11.
[85.] THEOR. 10. PROPOS. 52
[86.] SCHOLIVM.
[87.] THEOR. 11. PROPOS. 13.
[88.] COROLLARIVM.
[89.] THEOR. 12. PROPOS. 14.
[90.] THEOR. 13. PROPOS. 15.
[91.] THEOR. 14. PROPOS. 16.
[92.] THEOR. 15. PROPOS. 17.
[93.] THEOR. 16. PROPOS. 18.
[94.] COMMENTARIVS.
[95.] COMMENTARIVS.
[96.] COMMENTARIVS.
[97.] TERRAM, ET AQVAM ESSE ROTVNDAS.
[98.] COMMENTARIVS.
[99.] COMMENTARIVS.
[100.] COMMENTARIVS.
[101.] COMMENTARIVS.
[102.] COMMENTARIVS.
[103.] AN EX TERRA, ET AQVA VNVS FIAT GLO-bus, hoc eſt, an horum elementorum conuexæ ſuperficies idem habeant centrum.
[104.] TERRAM ESSE CENTRVM MVNDI.
[105.] COMMENTARIVS.
[106.] COMMENTARIVS.
[107.] COMMENTARIVS.
[108.] COMMENTARIVS.
[109.] COMMENTARIVS.
[110.] Omnes ſtellæ 4. magnit. Quartæ.
< >
page |< < (98) of 525 > >|
13598Comment. in I. Cap. Sphæræ
COROLLARIVM.
Ex omnibusiis, quæ demonſtrata ſunt, perſpicuum eſt circu-
11@Circul’ om
nibus figu-
@is rectili-
neis ſibi iſo
perimetris
maior eſt.
lum abſolute omnium figurarum rectilinearum ſibi iſoperimetra-
rum maximum eſſe.
Qvoniam enim ex propoſitione 5. habetur, regularium figurarum iſoperime-
trarum eam, quæ plura latera continet, eſſe maiorem:
Rurſus ex propoſitione 12. conſtat,
inter omnes figuras iſoperimetras æqualia numero latera habentes, eam maximam eſ-
ſe, quę regularis eſt:
Ex hac denique 13. propoſitioue perſpicuum eſt, circulum omnium
figurarum iſoperimet rarum regularium eſſe maximum:
Manifeſte concluditur, circu-
lum abſolute ac ſimpliciter omnium figurarum rectilinearum ſibi iſoperimetrarum ma-
ximum eſſe quod eſt propoſitum.
THEOR. 12. PROPOS. 14.
Area cuiuslibet pyramidis æqualis eſt ſolido rectangulo conten-
22Pyramis
quælibet
cui paralle-
lepipedo ſit
@qualis.
to ſub perpendiculari à uertice ad baſim protracta, &
tertia parte
baſis.
Sit pyramis, cuius baſis quotcu nque laterum A B C D E, & uertex F.
36[Figure 36] Solidum autem rectangulum G N, cu-
ius baſis G H I K, æqualis ſit tertię par-
ti baſis A B C D E, altitudo uero, ſiue
perpendicularis G L, æqualis altitudini
pyramidis, ſiue perpendiculari à uerti-
ce pyramidis ad eius baſim productæ.
Dico ſolidum rectangulum G N, ęqua-
le eſſe pyramidi A B C D E F.
Ducan-
tur enim ab oibus angulis baſis G H I K,
ad aliquod punctum baſis oppoſitę, ni-
mirum ad L, lineę rectæ, ita ut conſti-
tuatur pyramis G H I K L, eandem ha-
bens baſim cum ſolido G N, eand emq́ue
altitudinem &
cum eodem ſolido G N,
&
cum pyramide A B C D E F. Quo-
niam igitur pyramis A B C D E F, tri-
pla eſt pyramidis G H I K L, ut in ſcho-
lio propoſ.
6. lib. 12. Eucl. demonſtraui-
mus:
Et ſolidum G N, triplum quoque
eſt, ex coroll.
propoſ. 7. lib. 12. Eucl.
eiuſdem pyramidis G H I K L;
erit ſo-
lidum G N, pyramidi A B C D E F, ęqua
le.
Quapropter area cuiuslibet pyrami-
dis ęqualis eſt ſolido rectãgulo, &
c. quod
erat oſtendendum.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index