Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 126
[Note]
Page: 126
[Note]
Page: 127
[Note]
Page: 127
[Note]
Page: 128
[Note]
Page: 128
[Note]
Page: 129
[Note]
Page: 130
[Note]
Page: 131
[Note]
Page: 132
[Note]
Page: 133
[Note]
Page: 133
[Note]
Page: 134
[Note]
Page: 134
[Note]
Page: 134
[Note]
Page: 134
[Note]
Page: 135
[Note]
Page: 136
[Note]
Page: 136
[Note]
Page: 136
[Note]
Page: 137
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 139
[Note]
Page: 139
[Note]
Page: 139
[Note]
Page: 139
<
1 - 8
[out of range]
>
page
|<
<
(117)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div285
"
type
="
section
"
level
="
1
"
n
="
180
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2764
"
xml:space
="
preserve
">
<
pb
o
="
117
"
file
="
0137
"
n
="
137
"
rhead
="
LIBER II.
"/>
conſequentium, iuxta quæ, tanquam regulas, dictæ omnes lineæ, vel
<
lb
/>
omnia plana intelliguntur aſſumpta.</
s
>
<
s
xml:id
="
echoid-s2765
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div286
"
type
="
section
"
level
="
1
"
n
="
181
">
<
head
xml:id
="
echoid-head196
"
xml:space
="
preserve
">THEOREMA V. PROPOS. V.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2766
"
xml:space
="
preserve
">PArallelogramma in eadem altitudine exiſtentia inter ſe
<
lb
/>
ſunt, vt baſes; </
s
>
<
s
xml:id
="
echoid-s2767
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2768
"
xml:space
="
preserve
">quę in eadem baſi, vt altitudines, vel,
<
lb
/>
vt latera æqualiter baſibus inclinata.</
s
>
<
s
xml:id
="
echoid-s2769
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2770
"
xml:space
="
preserve
">Sint parallelogramma quæcunque, AM, MC, in eadem altitu-
<
lb
/>
dine conftituta, ſumpta altitudine iuxta baſes, GM, MH. </
s
>
<
s
xml:id
="
echoid-s2771
"
xml:space
="
preserve
">Dico
<
lb
/>
parallelogrammum, AM, ad parallelogrammum, MC, eſſe vt, G
<
lb
/>
M, ad, MH. </
s
>
<
s
xml:id
="
echoid-s2772
"
xml:space
="
preserve
">Ducatur quęcunq; </
s
>
<
s
xml:id
="
echoid-s2773
"
xml:space
="
preserve
">intra parallelogramma, AM, M
<
lb
/>
<
figure
xlink:label
="
fig-0137-01
"
xlink:href
="
fig-0137-01a
"
number
="
77
">
<
image
file
="
0137-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0137-01
"/>
</
figure
>
C, parallela ipſis, GM, MH, cu-
<
lb
/>
ius portiones parallelogrammis,
<
lb
/>
AM, MC, interceptę ſint, DE,
<
lb
/>
EI. </
s
>
<
s
xml:id
="
echoid-s2774
"
xml:space
="
preserve
">Quoniam ergo, DM, eſt
<
lb
/>
parallelogrammum, ſicut &</
s
>
<
s
xml:id
="
echoid-s2775
"
xml:space
="
preserve
">, E
<
lb
/>
H, erit, DE, ęqualis ipſi, GM,
<
lb
/>
&</
s
>
<
s
xml:id
="
echoid-s2776
"
xml:space
="
preserve
">, EI, ipſi, MH, erit igitur, G
<
lb
/>
M, ad, MH, vt, DE, ad, EI, & </
s
>
<
s
xml:id
="
echoid-s2777
"
xml:space
="
preserve
">DE, EI, ductæ ſunt vtcunq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2778
"
xml:space
="
preserve
">parallelæ ipſis, GM, MH, ergo parallelogramma, AM, MC, e-
<
lb
/>
runt ex genere figurarum Theorematis anteced. </
s
>
<
s
xml:id
="
echoid-s2779
"
xml:space
="
preserve
">ergo, AM, ad, M
<
lb
/>
C, erit vt, DE, ad, EI, vel vt, GM, ad, MH, quæ ſunt eorun-
<
lb
/>
dem baſes. </
s
>
<
s
xml:id
="
echoid-s2780
"
xml:space
="
preserve
">Hæc autem verificabuntur etiam ſi altitudines æquales
<
lb
/>
fuerint, vt facilè patet.</
s
>
<
s
xml:id
="
echoid-s2781
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2782
"
xml:space
="
preserve
">Sint nunc parallelogramma, QP, LP, in eadem baſi, NP, con-
<
lb
/>
ſtituta. </
s
>
<
s
xml:id
="
echoid-s2783
"
xml:space
="
preserve
">Dico eadem eſſe, vt altitudines ſumptæ iuxta baſim, NP,
<
lb
/>
demittantur ergo, OR, TS, altitudines in, NP, productam, in
<
lb
/>
punctis, RS, illi occurrentes (niſi fortè, TP, OP, eſſent ipſæ alti-
<
lb
/>
tudines, vel intra parallelogramma inciderent baſi, NP,) & </
s
>
<
s
xml:id
="
echoid-s2784
"
xml:space
="
preserve
">à pun-
<
lb
/>
ctis, Q, L, illis parallelæ, QX, LV, in punctis, V, X, baſi, NP,
<
lb
/>
incidentes, ſuntigitur parallelogramma, QS, LR, in ęqualibus al-
<
lb
/>
titudinibus, QT, LO, ſumptis iuxta baſes, TS, OR, ergo paral-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0137-01
"
xlink:href
="
note-0137-01a
"
xml:space
="
preserve
">Ex prima
<
lb
/>
parte hu-
<
lb
/>
ius Prop.</
note
>
lelogramma, QS, LR, erunt inter ſe, vt baſes, TS, OR, eſt au-
<
lb
/>
tem parallelogrammum, QS, æquale parallelogrammo, QP, &</
s
>
<
s
xml:id
="
echoid-s2785
"
xml:space
="
preserve
">,
<
lb
/>
LR, ipſi, LP, ergo parallelogramma, QP, LP, erunt inter ſe, vt,
<
lb
/>
TS, OR, quæ pro ipſis ſunt altitudines ſumptæ iuxta baſim, NP.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2786
"
xml:space
="
preserve
">Si autem latus, OP, extenderetur ſuper latus, PT, ideſt latera, O
<
lb
/>
P, PT, eſſent ęqualiter inclinata communi baſi, NP, tunc ſumptis
<
lb
/>
pro baſibus ipſis, TP, OP, haberemus parallelogramma, QP, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>