Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Page concordance

< >
Scan Original
111 390
112 391
113 392
114 393
115 394
116 395
117 396
118 397
119 398
120
121
122
123 399
124 400
125 401
126 402
127 403
128 404
129
130
131
132
133
134
135
136
137
138
139
140 413
< >
page |< < of 568 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div142" type="section" level="1" n="61">
          <p style="it">
            <s xml:id="echoid-s2726" xml:space="preserve">
              <pb file="0130" n="139" rhead="PRÆFATIO AD LECTOREM."/>
            lum hinc fructum colliges.</s>
            <s xml:id="echoid-s2727" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div143" type="section" level="1" n="62">
          <head xml:id="echoid-head93" xml:space="preserve">DEFINITIONES.</head>
          <p>
            <s xml:id="echoid-s2728" xml:space="preserve">1 Si in circulo, ellipſe vel hyperbola ducantur è centro
              <lb/>
            in ejus perimetrum duæ rectæ, appellamus planum
              <lb/>
            ab illis rectis & </s>
            <s xml:id="echoid-s2729" xml:space="preserve">perimetri ſegmento comprehenſum,
              <lb/>
            ſectorem.</s>
            <s xml:id="echoid-s2730" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2731" xml:space="preserve">2 Si perimetri ſegmentum inter illas rectas comprehenſum à
              <lb/>
            rectis quotcumque ſubtendatur, ita ut triangula rectili-
              <lb/>
            nea (quorum communis vertex eſt ſectionis centrum & </s>
            <s xml:id="echoid-s2732" xml:space="preserve">
              <lb/>
            baſes rectæ ſubtendentes) ſint æqualia; </s>
            <s xml:id="echoid-s2733" xml:space="preserve">vocamus rectili-
              <lb/>
            neum illud ab iſtis triangulis conflatum, polygonum re-
              <lb/>
            gulare inſcriptum, ſi ſectio conica fuerit circulus vel el-
              <lb/>
            lipſis; </s>
            <s xml:id="echoid-s2734" xml:space="preserve">quod ſi fuerit hyperbola, vocamus illud rectili-
              <lb/>
            neum polygonum regulare circumſcriptum.</s>
            <s xml:id="echoid-s2735" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2736" xml:space="preserve">3 Si perimetri ſegmentum inter illas rectas comprehenſum à
              <lb/>
            rectis quotcunque tangatur & </s>
            <s xml:id="echoid-s2737" xml:space="preserve">à tactibus ad ſectionis cen-
              <lb/>
            trum ducantur rectæ; </s>
            <s xml:id="echoid-s2738" xml:space="preserve">ſi inquam omnia trapezia, a tan-
              <lb/>
            gentibus proximis & </s>
            <s xml:id="echoid-s2739" xml:space="preserve">rectis ad centrum comprehenſa, fue-
              <lb/>
            rint æqualia; </s>
            <s xml:id="echoid-s2740" xml:space="preserve">appello rectilineum ab illis conflatum, poly-
              <lb/>
            gonum regulare circumſcriptum, ſi ſectio conica ſit elli-
              <lb/>
            pſis vel circulus, & </s>
            <s xml:id="echoid-s2741" xml:space="preserve">polygonum regulare inſcriptum ſi
              <lb/>
            fuerit hyperbola.</s>
            <s xml:id="echoid-s2742" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2743" xml:space="preserve">4 Si omnes anguli (excepto illo ad ſectionis centrum) po-
              <lb/>
            lygoni regularis à ſubtendentibus comprehenſi </s>
          </p>
        </div>
      </text>
    </echo>