Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 568
>
Scan
Original
111
390
112
391
113
392
114
393
115
394
116
395
117
396
118
397
119
398
120
121
122
123
399
124
400
125
401
126
402
127
403
128
404
129
130
131
132
133
134
135
136
137
138
139
140
413
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 568
>
page
|<
<
of 568
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div142
"
type
="
section
"
level
="
1
"
n
="
61
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2726
"
xml:space
="
preserve
">
<
pb
file
="
0130
"
n
="
139
"
rhead
="
PRÆFATIO AD LECTOREM.
"/>
lum hinc fructum colliges.</
s
>
<
s
xml:id
="
echoid-s2727
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div143
"
type
="
section
"
level
="
1
"
n
="
62
">
<
head
xml:id
="
echoid-head93
"
xml:space
="
preserve
">DEFINITIONES.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2728
"
xml:space
="
preserve
">1 Si in circulo, ellipſe vel hyperbola ducantur è centro
<
lb
/>
in ejus perimetrum duæ rectæ, appellamus planum
<
lb
/>
ab illis rectis & </
s
>
<
s
xml:id
="
echoid-s2729
"
xml:space
="
preserve
">perimetri ſegmento comprehenſum,
<
lb
/>
ſectorem.</
s
>
<
s
xml:id
="
echoid-s2730
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2731
"
xml:space
="
preserve
">2 Si perimetri ſegmentum inter illas rectas comprehenſum à
<
lb
/>
rectis quotcumque ſubtendatur, ita ut triangula rectili-
<
lb
/>
nea (quorum communis vertex eſt ſectionis centrum & </
s
>
<
s
xml:id
="
echoid-s2732
"
xml:space
="
preserve
">
<
lb
/>
baſes rectæ ſubtendentes) ſint æqualia; </
s
>
<
s
xml:id
="
echoid-s2733
"
xml:space
="
preserve
">vocamus rectili-
<
lb
/>
neum illud ab iſtis triangulis conflatum, polygonum re-
<
lb
/>
gulare inſcriptum, ſi ſectio conica fuerit circulus vel el-
<
lb
/>
lipſis; </
s
>
<
s
xml:id
="
echoid-s2734
"
xml:space
="
preserve
">quod ſi fuerit hyperbola, vocamus illud rectili-
<
lb
/>
neum polygonum regulare circumſcriptum.</
s
>
<
s
xml:id
="
echoid-s2735
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2736
"
xml:space
="
preserve
">3 Si perimetri ſegmentum inter illas rectas comprehenſum à
<
lb
/>
rectis quotcunque tangatur & </
s
>
<
s
xml:id
="
echoid-s2737
"
xml:space
="
preserve
">à tactibus ad ſectionis cen-
<
lb
/>
trum ducantur rectæ; </
s
>
<
s
xml:id
="
echoid-s2738
"
xml:space
="
preserve
">ſi inquam omnia trapezia, a tan-
<
lb
/>
gentibus proximis & </
s
>
<
s
xml:id
="
echoid-s2739
"
xml:space
="
preserve
">rectis ad centrum comprehenſa, fue-
<
lb
/>
rint æqualia; </
s
>
<
s
xml:id
="
echoid-s2740
"
xml:space
="
preserve
">appello rectilineum ab illis conflatum, poly-
<
lb
/>
gonum regulare circumſcriptum, ſi ſectio conica ſit elli-
<
lb
/>
pſis vel circulus, & </
s
>
<
s
xml:id
="
echoid-s2741
"
xml:space
="
preserve
">polygonum regulare inſcriptum ſi
<
lb
/>
fuerit hyperbola.</
s
>
<
s
xml:id
="
echoid-s2742
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2743
"
xml:space
="
preserve
">4 Si omnes anguli (excepto illo ad ſectionis centrum) po-
<
lb
/>
lygoni regularis à ſubtendentibus comprehenſi </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>