Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
141
(117)
142
(118)
143
(119)
144
(120)
145
(121)
146
(122)
147
(123)
148
(124)
149
(125)
150
(126)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
page
|<
<
(120)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div392
"
type
="
section
"
level
="
1
"
n
="
165
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s4052
"
xml:space
="
preserve
">
<
pb
o
="
120
"
file
="
0144
"
n
="
144
"
rhead
="
"/>
ptarum, ſed eſſe MAXIMAS quoque earum, quæ ad partes verticum in-
<
lb
/>
ſcribuntur; </
s
>
<
s
xml:id
="
echoid-s4053
"
xml:space
="
preserve
">id ſequenti Theoremate, in angulo, & </
s
>
<
s
xml:id
="
echoid-s4054
"
xml:space
="
preserve
">qualibet coni-ſectione,
<
lb
/>
vel circulo conſequetur, ſimulque dabitur Methodus ipſis inſcribendi ſimiles
<
lb
/>
Ellipſes, quæ ſucceſsiuè ſe mutuò, & </
s
>
<
s
xml:id
="
echoid-s4055
"
xml:space
="
preserve
">anguli, vel ſectionum latera contin-
<
lb
/>
gant.</
s
>
<
s
xml:id
="
echoid-s4056
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div393
"
type
="
section
"
level
="
1
"
n
="
166
">
<
head
xml:id
="
echoid-head171
"
xml:space
="
preserve
">THEOR. XXXVI. PROP. LXXVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4057
"
xml:space
="
preserve
">Ellipſes inſcriptæ eidem angulo, vel Parabolæ, vel Hyperbolę,
<
lb
/>
aut portioni Ellipticæ, vel circulari, quæ non excedat Ellipſis, vel
<
lb
/>
circuli dimidium, ſe mutuò, & </
s
>
<
s
xml:id
="
echoid-s4058
"
xml:space
="
preserve
">anguli latera, vel ſectionem, vel
<
lb
/>
circulum contingentes, & </
s
>
<
s
xml:id
="
echoid-s4059
"
xml:space
="
preserve
">quarum diagonales menſalium, quibus
<
lb
/>
inſcribuntur, inter ſe æquidiſtent, ſunt ſimiles, & </
s
>
<
s
xml:id
="
echoid-s4060
"
xml:space
="
preserve
">quæ propior eſt
<
lb
/>
vertici, minor eſt remotiori.</
s
>
<
s
xml:id
="
echoid-s4061
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4062
"
xml:space
="
preserve
">SIt ABC, vel angulusrectilineus, vt in prima figura, vel Parabolæ, vel
<
lb
/>
Hyperbolæ, aut portio non maior ſemi-circuli, vel ſemi-Ellipſis dimi-
<
lb
/>
dio, vt in ſecunda, cuius vertex B, diameter BD, & </
s
>
<
s
xml:id
="
echoid-s4063
"
xml:space
="
preserve
">circa ipſius ſegmentum
<
lb
/>
DE, inter applicatas AC, IF, ducta diagonali AF, ſecan@ diametrum ED
<
lb
/>
in K, & </
s
>
<
s
xml:id
="
echoid-s4064
"
xml:space
="
preserve
">applicata per K recta GKH, per extrema G, E, H, D,
<
note
symbol
="
a
"
position
="
left
"
xlink:label
="
note-0144-01
"
xlink:href
="
note-0144-01a
"
xml:space
="
preserve
">Coroll.
<
lb
/>
57. h.</
note
>
Ellipſis GEHD, quæ per Scholium 62. </
s
>
<
s
xml:id
="
echoid-s4065
"
xml:space
="
preserve
">huius, menſali AIFC, hoc eſt dato
<
lb
/>
angulo, vel ſectioni crit inſcripta. </
s
>
<
s
xml:id
="
echoid-s4066
"
xml:space
="
preserve
">Et per I ducta IL parallela diagonali AF,
<
lb
/>
diametrum ſecan@ in O, conſimili conſtructione, ac ſupra, deſcribatur in
<
lb
/>
menſali INLF Ellipſis PMQE. </
s
>
<
s
xml:id
="
echoid-s4067
"
xml:space
="
preserve
">Dico primùm has Ellipſes inter ſe ſimiles
<
lb
/>
eſſe.</
s
>
<
s
xml:id
="
echoid-s4068
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4069
"
xml:space
="
preserve
">Nam, in prima figura, proportio rectanguli GKH, ad rectangulum AKF,
<
lb
/>
componitur ex ratione GK ad KA, ſiue (per triangulorum ſimilitudinem)
<
lb
/>
PO ad OI, & </
s
>
<
s
xml:id
="
echoid-s4070
"
xml:space
="
preserve
">ex ratione HK ad KF, ſiue QO ad OL, ſed etiam proportio re-
<
lb
/>
ctanguli POQ, IOL, ex ijſdem rationibus componitur, quare in triangulo,
<
lb
/>
rectangulum GKH ad AKF, eſt vt rectangulum POQ ad IOL.</
s
>
<
s
xml:id
="
echoid-s4071
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4072
"
xml:space
="
preserve
">Iam, in ſecunda figura, eadem ratione, vt in 64. </
s
>
<
s
xml:id
="
echoid-s4073
"
xml:space
="
preserve
">huius, oſtendetur huiuſ-
<
lb
/>
modi Ellipſium centra cadere infra K, O, nempe in R, S, per quæ ſi appli-
<
lb
/>
centur RT, SV, ipſæ, diagonales ſecabunt in T, V; </
s
>
<
s
xml:id
="
echoid-s4074
"
xml:space
="
preserve
">
<
gap
/>
cum ſit DR ęqua-
<
lb
/>
lis RE, erit AT æqualis TF, ob parallelas; </
s
>
<
s
xml:id
="
echoid-s4075
"
xml:space
="
preserve
">item IV æqualis VL; </
s
>
<
s
xml:id
="
echoid-s4076
"
xml:space
="
preserve
">ſuntque
<
lb
/>
AF, IL æquidiſtanter ductæ in ſectione, vel circulo, quare iuncta TV erit
<
lb
/>
earundem æquidiſtantium diameter, quæ producta ad aliud punctum, præ-
<
lb
/>
ter B, ſectioni occurret, vt in Z, eritque ſectionis, vel circuli diameter: </
s
>
<
s
xml:id
="
echoid-s4077
"
xml:space
="
preserve
">
<
note
symbol
="
b
"
position
="
left
"
xlink:label
="
note-0144-02
"
xlink:href
="
note-0144-02a
"
xml:space
="
preserve
">28. ſec.
<
lb
/>
conic.</
note
>
ergo ex verticibus B, Z, agantur BX, ZX ordinatim applicatis GH, AF æ-
<
lb
/>
quidiſtantes, hæ ſectionem contingent, & </
s
>
<
s
xml:id
="
echoid-s4078
"
xml:space
="
preserve
">ſimul conuenient in X; </
s
>
<
s
xml:id
="
echoid-s4079
"
xml:space
="
preserve
">
<
note
symbol
="
c
"
position
="
left
"
xlink:label
="
note-0144-03
"
xlink:href
="
note-0144-03a
"
xml:space
="
preserve
">17. pri-
<
lb
/>
mi conic.</
note
>
<
note
symbol
="
d
"
position
="
left
"
xlink:label
="
note-0144-04
"
xlink:href
="
note-0144-04a
"
xml:space
="
preserve
">59. h.</
note
>
rectangulum GKH ad rectangulum AKF, vt quadratum BX ad quadratum
<
lb
/>
ZX; </
s
>
<
s
xml:id
="
echoid-s4080
"
xml:space
="
preserve
">item erit rectangulum POQ ad IOL, vt idem quadratum BX ad
<
note
symbol
="
e
"
position
="
left
"
xlink:label
="
note-0144-05
"
xlink:href
="
note-0144-05a
"
xml:space
="
preserve
">17. tertij
<
lb
/>
conic.</
note
>
ZX, quapropter rectangulum GKH ad AKF, erit vt rectangulum POQ ad
<
lb
/>
IOL, quod etiam ſuperius in prima figura demonſtratum fuit. </
s
>
<
s
xml:id
="
echoid-s4081
"
xml:space
="
preserve
">Itaque, cum
<
lb
/>
ſit in vtraque, rectangulum GKH ad AKF, vt rectangulum POQ ad IOL, &</
s
>
<
s
xml:id
="
echoid-s4082
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>