Ibn-al-Haitam, al-Hasan Ibn-al-Hasan; Witelo; Risner, Friedrich, Opticae thesavrvs Alhazeni Arabis libri septem, nunc primùm editi. Eivsdem liber De Crepvscvlis & Nubium ascensionibus. Item Vitellonis Thuvringopoloni Libri X. Omnes instaurati, figuris illustrati & aucti, adiectis etiam in Alhazenum commentarijs, a Federico Risnero, 1572

Table of figures

< >
[41] h t a d ſ s g k b e
[42] a b h e d z
[43] b a g q t d z e h
[44] a g b e d z t q h
[45] b g a t z d h
[46] a h b e g p d z n q
[47] h a b e g p d z n q
[48] a h b e g p f d z n q
[49] x e g k z a d
[50] g m h z p b d a k
[51] t g p b h i z d a k s
[52] g z f h a b d c q e k ſ r
[53] m t n q h b f e z p d a g
[54] b ſ d h f r g z q t e a
[55] a d q c m x b g p o k t f z h
[56] a d k u m r h b g i l f e o z t y
[57] a d u m b g o e q s z h p
[58] a d u m c g b o t q p n z h
[59] b k a p f m e l z g t r o q h n d
[60] b k u a p e g t q n d
[61] b d a f e g c
[62] q a e g
[63] a z g e b q
[64] d q g h a z b
[65] k t o z m u y f c l z
[66] q d g e a b
[67] q d n e g h a b
[68] d q n g a e h b
[69] a g e b d
[70] h n t f x q c u p m z ſ
< >
page |< < (139) of 778 > >|
145139OPTICAE LIBER V.ræ: a d b z diameteruiſualis: z c g circulus ſphæræ in ſuperficie linearũ contingẽtiæ: & protrahatur
à centro ad punctũ contingentiæ diameter b g.
Palàm, quòd angulus z b g eſt maior recto. Cũ enim
in triãgulo b a g angulus b g a [per 18 p 3]
55[Figure 55]a d q c m x b g p o k t f z h ſit rectus, erit [per 17 p 1] angulus g b a mi
nor recto:
quare [per 13 p 1] z b g maior.
Sit ergo [per 23 p 1] h b g rectus:
erit ergo
[per 28 p 1] h b æquidiſtans lineę cõtingẽ
tię a g:
Igitur [per 35 d 1] productæ nunꝗ̃
concurrent:
& quęlibet diameter inter h
& g concurret cũ linea a g [per lẽma Pro-
cli ad 29 p 1.
] Ducatur à pũcto a linea ſe-
cans ſphęrã:
quæ ſit a m o: ita quod chor-
da, quę eſt m o, ſit ęqualis ſemidiametro
o b:
& cõcurrat ſemidiameter b o cum li-
nea a g, in puncto t.
Dico, quòd in quoli-
bet pũcto t o eſt locus imaginis:
& in nul
lo alio puncto diametri t b eſt locus ima-
ginis:
& ſunt o, t termini locorũ imaginũ
[per 23 n.
] Sumatur enim punctũ: & ſit k:
& a n k ducatur ſecans ſphærã in puncto
n:
& ducatur perpendicularis b n x: & [ք
23 p 1] angulo x n a fiat angulus ęqualis per lineam f n.
Palàm, quò d n f nõ cadet inter b, g. Quoniã ſic
aut ſecaret ſphæram, aut ſecaret contingentẽ a g in duobus punctis [& ſic duę lineę rectę ſpatiũ cõ-
prehenderent contra 12 ax.
] Igitur forma puncti f mouebitur per f n ad punctum n, & reflectetur ad
a per lineam a n:
& apparebit imago eius in puncto k [per 3 n. ] Et eadem probatio eſt, ſumpto
quocunque alio puncto.
26. Si linea reflexionis æquans ſua parte inſcripta ſemidiametrum circuli (qui est communis
ſectio ſuperficierum reflexionis & ſpeculi ſphærici conuexi) terminetur in peripheria non appa
rente: perpẽdicularis incidẽtiæ, ſecãs peripheriã inter lineã reflexionis, & rectã à uiſu ſpeculũ
tangentẽ: habebit quaſdam imagines intra, quaſdam extra ſpeculũ: unam in ſuperficie. 31 p 6.
AMplius: dico, quòd in arcu o g, quęcunque
56[Figure 56]a d k u m r h b g i l f e o z t y ſumatur diameter, continebit loca imagi-
num:
& intra ſpeculum quaſdã: & unã in ſu
perficie:
& alias extra ſpeculũ. Sumatur ergo pun-
ctum l:
& protrahatur diameter b l, quouſq; ſecet
a t in puncto e:
& producatur linea a l, ſecans ſphæ
ram in puncto r.
Palàm, quòd r l minor eſt t b: quia
[per 15 p 3] eſt minor m o:
quæ eſt ęqualis ſemidia
metro [ex theſi.
] Si ergo ab a ducatur linea ad dia
metrum b l:
cuius pars interiacens inter circulũ &
diametrum, ſit æqualis parti diametri à puncto, in
quod cadit, uſq;
ad centrũ: cadet inter l & b. Si e-
nim inter l & e ceciderit:
erit r l maior l b: oĩs enim
linea interiacens inter centrũ, & illam partẽ lineæ
reflexionis, illi parti diametri ęqualem:
erit maior
parte diametri, qua terminatur, ſecundum proba-
tionem aſsignatam in explanatione metæ imagi-
num [23 & proximo numeris.
] Sit ergo punctum,
in quod linea æqualis cadit:
i. Dico, quòd in quo-
libet puncto lineę e i eſt locus imaginis:
& erit ea-
dem demonſtratio, quę fuit in t o [præcedente nu
mero.
] Igitur quędã imagines in diametro e b ſor
tiuntur loca intra ſpeculũ:
quędam extra ſpeculũ:
una ſola in ſuperficie:
ſcilicet in puncto l. Et ita po
teris demonſtrare in qualibet diametro per puncta arcus o g tranſeunte.
27. Si linea reflexionis, æquans ſua parte in ſcripta ſemidiametrum circuli (qui eſt commu-
nis ſectio ſuperficierum reflexionis & ſpeculi ſphærici conuexi) terminetur in peripheria nõ ap-
parente: perpendicularis incidentiæ ſecans peripheriam inter terminos lineæ reflexionis &
quadr antis peripheriæ, à puncto tact{us}, rectæ à uiſu ſpeculum tangentis, inchoati, habebit i-
magines extra ſpeculum. 32 p 6.
AMplius: ſumpta quacunq; diametro in arcu o h: locus imaginis in eo erit extra ſpeculũ. Suma

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index