Bernoulli, Daniel, Hydrodynamica, sive De viribus et motibus fluidorum commentarii

Page concordance

< >
Scan Original
141 127
142 128
143 129
144 130
145 131
146 132
147 133
148 134
149 135
150 136
151 137
152 138
153 139
154 140
155 141
156 142
157
158 144
159 145
160 146
161 147
162 148
163 149
164 150
165 151
166 152
167 153
168 154
169 155
170 156
< >
page |< < (131) of 361 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div148" type="section" level="1" n="117">
          <p>
            <s xml:id="echoid-s3763" xml:space="preserve">
              <pb o="131" file="0145" n="145" rhead="SECTIO SEPTIMA."/>
            cujus ſecundus terminus z d v rurſus præ primo negligi poteſt, ita vero
              <lb/>
            habetur
              <lb/>
            adv + nnvdz = (c - z)dz.</s>
            <s xml:id="echoid-s3764" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3765" xml:space="preserve">Ponatur hic (ſumto α pro numero, cujus logarithmus hyperbolicus eſt
              <lb/>
            unitas) v = {1/nn}α
              <emph style="super">{-nnz/a}</emph>
            q; </s>
            <s xml:id="echoid-s3766" xml:space="preserve">hoc modo mutabitur poſtrema æquatio in hanc
              <lb/>
            α{-nnz/a}adq = nn (c - z)dz, vel
              <lb/>
            adq = nnα
              <emph style="super">{nnz/a}</emph>
            X (c - z)dz:</s>
            <s xml:id="echoid-s3767" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3768" xml:space="preserve">Hæc vero ita eſt integranda, ut z & </s>
            <s xml:id="echoid-s3769" xml:space="preserve">v vel etiam z & </s>
            <s xml:id="echoid-s3770" xml:space="preserve">q ſimul evane-
              <lb/>
            ſcant; </s>
            <s xml:id="echoid-s3771" xml:space="preserve">habebitur igitur
              <lb/>
            q = (c + {a/nn} - z)α
              <emph style="super">{nnz/a}</emph>
            - c - {a/nn}, vel denique
              <lb/>
            v = {1/nn} (c + {a/nn} - z) - {1/nn} (c + {a/nn})α
              <emph style="super">{-nnz/a}</emph>
            ;</s>
            <s xml:id="echoid-s3772" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3773" xml:space="preserve">Ex iſta vero æquatione deducitur:</s>
            <s xml:id="echoid-s3774" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3775" xml:space="preserve">I. </s>
            <s xml:id="echoid-s3776" xml:space="preserve">Oriri rurſus, ut paragrapho decimo alia mathodo inventum fuit,
              <lb/>
            v = {2cz - zz/2a}, ſi nempe rurſus ponatur {nnz/a} numerus valde parvus, Id ve-
              <lb/>
            ro ut pateat, reſolvenda eſt quantitas exponentialis α
              <emph style="super">{-nnz/a}</emph>
            in ſeriem, quæ
              <lb/>
            eſt ipſi æqualis, 1 - {nnz/a} + {n
              <emph style="super">4</emph>
            zz/2aa} - {n
              <emph style="super">6</emph>
            z
              <emph style="super">3</emph>
            /2. </s>
            <s xml:id="echoid-s3777" xml:space="preserve">3a
              <emph style="super">3</emph>
            } + &</s>
            <s xml:id="echoid-s3778" xml:space="preserve">c. </s>
            <s xml:id="echoid-s3779" xml:space="preserve">ex quâ pro noſtro
              <lb/>
            ſcopo tres priores termini ſufficiunt; </s>
            <s xml:id="echoid-s3780" xml:space="preserve">eo autem ſubſtituto valore rejectoque
              <lb/>
            termino rejiciendo, reperitur ut dixi
              <lb/>
            v = {2cz - zz/2a}</s>
          </p>
          <p>
            <s xml:id="echoid-s3781" xml:space="preserve">II. </s>
            <s xml:id="echoid-s3782" xml:space="preserve">At ſi viciſſim {nn/1} infinites major ponatur quam {a/z} aut {a/c}, quia tunc
              <lb/>
            α{-nnz/a} = o, ut & </s>
            <s xml:id="echoid-s3783" xml:space="preserve">{a/nn} = o, fieri intelligitur v = c - z, ſive v = x - b,
              <lb/>
            ut §. </s>
            <s xml:id="echoid-s3784" xml:space="preserve">4.</s>
            <s xml:id="echoid-s3785" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3786" xml:space="preserve">III. </s>
            <s xml:id="echoid-s3787" xml:space="preserve">Neutram vero præmiſſarum formularum ſine notabili errore lo-
              <lb/>
            cum habere patet, cum {nnc/a}, numerus eſt mediocris, nempe nec infinitus,
              <lb/>
            nec infinite parvus, & </s>
            <s xml:id="echoid-s3788" xml:space="preserve">tamen utraque quantitas {nn/1} & </s>
            <s xml:id="echoid-s3789" xml:space="preserve">{a/c} infinita.</s>
            <s xml:id="echoid-s3790" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>