Bernoulli, Daniel, Hydrodynamica, sive De viribus et motibus fluidorum commentarii

Page concordance

< >
Scan Original
141 127
142 128
143 129
144 130
145 131
146 132
147 133
148 134
149 135
150 136
151 137
152 138
153 139
154 140
155 141
156 142
157
158 144
159 145
160 146
161 147
162 148
163 149
164 150
165 151
166 152
167 153
168 154
169 155
170 156
< >
page |< < (134) of 361 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div150" type="section" level="1" n="118">
          <pb o="134" file="0148" n="148" rhead="HYDRODYNAMICÆ"/>
          <p>
            <s xml:id="echoid-s3849" xml:space="preserve">III. </s>
            <s xml:id="echoid-s3850" xml:space="preserve">Cum deſcenſus incipere intelligatur ab altitudine X Y, ſubſe-
              <lb/>
            quenſque aſcenſus fieri uſque in CD, fore productum deſcenſus actualis maſſæ aquæ
              <lb/>
            X Y D C uſque ad T V in maſſam, menſuram rationis utriuſque combinatæ,
              <lb/>
            quæ, ut §. </s>
            <s xml:id="echoid-s3851" xml:space="preserve">2. </s>
            <s xml:id="echoid-s3852" xml:space="preserve">dictum, aſcenſum à præcedente deſcenſu differre faciunt, & </s>
            <s xml:id="echoid-s3853" xml:space="preserve">cum
              <lb/>
            ratio ſecundo loco recenſita evaneſcat, ſi omne auferatur fundum IM, fore
              <lb/>
            tunc iſtud productum æquale vi vivæ omnis aquæ, durante deſcenſu ejectæ, ita
              <lb/>
            ut ſine alio calculo, præter hactenus jam poſitos, aſcenſus aquarum in cylin-
              <lb/>
            dro toto aperto definiri poſſit.</s>
            <s xml:id="echoid-s3854" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3855" xml:space="preserve">IV. </s>
            <s xml:id="echoid-s3856" xml:space="preserve">Aſcenſum fore æqualem deſcenſui, cum cylindrus infinite ſub-
              <lb/>
            merſus intelligitur evaneſcentibus tunc præfatis diminutionis cauſis.</s>
            <s xml:id="echoid-s3857" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3858" xml:space="preserve">V. </s>
            <s xml:id="echoid-s3859" xml:space="preserve">Hinc igitur oſcillationes ſine fine fore, quia poſtremæ oſcillatio-
              <lb/>
            nes ſemper ſint veluti infinite parvæ ratione ſubmerſionis altitudinum: </s>
            <s xml:id="echoid-s3860" xml:space="preserve">faciunt
              <lb/>
            autem impedimenta aliena, quorum nullam hucuſque rationem habuimus, ut
              <lb/>
            omnis motus cito admodum ceſſet.</s>
            <s xml:id="echoid-s3861" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3862" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3863" xml:space="preserve">14. </s>
            <s xml:id="echoid-s3864" xml:space="preserve">His generatim præmonitis, problema accuratiori calculo ſub-
              <lb/>
            jiciemus: </s>
            <s xml:id="echoid-s3865" xml:space="preserve">duplicem autem dabo ſolutionem, alteram ad principia modo ex-
              <lb/>
            poſita accommodatam, alteram ſpecie quodammodo diverſam.</s>
            <s xml:id="echoid-s3866" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3867" xml:space="preserve">Igitur retentis tum figura, tum denominationibus §. </s>
            <s xml:id="echoid-s3868" xml:space="preserve">3. </s>
            <s xml:id="echoid-s3869" xml:space="preserve">conſiderabi-
              <lb/>
            mus aquam ex altitudine X Y deſcendiſſe uſque in x y, & </s>
            <s xml:id="echoid-s3870" xml:space="preserve">ab hoc termino aſ-
              <lb/>
            cenſum ſuum inchoare; </s>
            <s xml:id="echoid-s3871" xml:space="preserve">dicatur M y vel I x = α & </s>
            <s xml:id="echoid-s3872" xml:space="preserve">poſtquam jam aſcendit uſ-
              <lb/>
            que ad c d vel e f, ponatur M d = ξ, df = dξ: </s>
            <s xml:id="echoid-s3873" xml:space="preserve">His ita ad calculum præpa-
              <lb/>
            ratis, deſignataque rurſus per v altitudine debita velocitati aquæ in c d & </s>
            <s xml:id="echoid-s3874" xml:space="preserve">per
              <lb/>
            v + d v ſimili altitudine in ſitu proximo e f, inquiremus in incrementum aſcen.
              <lb/>
            </s>
            <s xml:id="echoid-s3875" xml:space="preserve">ſus potentialis aquæ accedens, dum cylindrum ſubit guttula L O N P, ſuperfi-
              <lb/>
            cieſque ex c d aſcendit in e f; </s>
            <s xml:id="echoid-s3876" xml:space="preserve">Perſpicuum autem eſt, cum ubique aſcenſus po-
              <lb/>
            tent. </s>
            <s xml:id="echoid-s3877" xml:space="preserve">aquæ internæ multiplicatus per ſuam maſſam exprimatur per n ξ v (nec
              <lb/>
            enim ulla attentio adhibenda eſt ad motum inteſtinum) fore ejusdem produ-
              <lb/>
            cti incrementum n ξ d v + n v d ξ: </s>
            <s xml:id="echoid-s3878" xml:space="preserve">Si vero præterea conſideretur aſcenſus po-
              <lb/>
            tent. </s>
            <s xml:id="echoid-s3879" xml:space="preserve">n n v - v, (vid. </s>
            <s xml:id="echoid-s3880" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3881" xml:space="preserve">2.) </s>
            <s xml:id="echoid-s3882" xml:space="preserve">quem guttula influens n d ξ perdit, quique pariter
              <lb/>
            debetur deſcenſui actuali particulæ aqueæ n d ξ per altitudinem b - x, patet eſſe
              <lb/>
            ponendum
              <lb/>
            nξdv + nvdξ + (nnv - v) ndξ = (b - ξ) ndξ, vel
              <lb/>
            ξdv + nnvdξ = (b - ξ) dξ.</s>
            <s xml:id="echoid-s3883" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>