Bernoulli, Daniel, Hydrodynamica, sive De viribus et motibus fluidorum commentarii

Page concordance

< >
Scan Original
141 127
142 128
143 129
144 130
145 131
146 132
147 133
148 134
149 135
150 136
151 137
152 138
153 139
154 140
155 141
156 142
157
158 144
159 145
160 146
161 147
162 148
163 149
164 150
165 151
166 152
167 153
168 154
169 155
170 156
< >
page |< < (136) of 361 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div150" type="section" level="1" n="118">
          <pb o="136" file="0150" n="150" rhead="HYDRODYNAMICÆ"/>
          <p>
            <s xml:id="echoid-s3919" xml:space="preserve">Cum vero amplitudo foraminis rationem habet finitam ad amplitudi-
              <lb/>
            nem tubi, aſcenſus fit ultra ſuperficiem R S veluti usque in s t: </s>
            <s xml:id="echoid-s3920" xml:space="preserve">minor au-
              <lb/>
            tem ſemper erit Vt quam Vy, niſi cum omne fundum abeſt, tunc enim
              <lb/>
            erit V t = V y. </s>
            <s xml:id="echoid-s3921" xml:space="preserve">Prouti monuimus §. </s>
            <s xml:id="echoid-s3922" xml:space="preserve">5. </s>
            <s xml:id="echoid-s3923" xml:space="preserve">in deſcenſu differentiam inter V Y & </s>
            <s xml:id="echoid-s3924" xml:space="preserve">
              <lb/>
            V y, proportionalem eſſe & </s>
            <s xml:id="echoid-s3925" xml:space="preserve">originem debere aſcenſui potentiali aquæ durante
              <lb/>
            deſcenſu ejectæ, ita nunc obſervari poteſt in aſcenſu differentiam inter V y
              <lb/>
            & </s>
            <s xml:id="echoid-s3926" xml:space="preserve">V t originem habere ab illiſione guttularum L o n P in maſſam aquæ ſu-
              <lb/>
            perjacentis, quæ quidem illiſio non promovet aſcenſum, ſed in inutilem mo-
              <lb/>
            tum inteſtinum impenditur, prouti indicatum fuit §. </s>
            <s xml:id="echoid-s3927" xml:space="preserve">2. </s>
            <s xml:id="echoid-s3928" xml:space="preserve">Ergo cum omne
              <lb/>
            fundum I M abeſt, aqua tubum eadem velocitate ingreditur, qua jam gau-
              <lb/>
            det aqua tubum antea ingreſſa & </s>
            <s xml:id="echoid-s3929" xml:space="preserve">nulla fit colliſio, quæ cauſa eſt cur in iſto
              <lb/>
            caſu tantum aſcendat aqua ultra ſuperficiem R S, quantum fuerat infra il-
              <lb/>
            lam depreſſa, quod æquatio, uti mox videbimus, indicat.</s>
            <s xml:id="echoid-s3930" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3931" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3932" xml:space="preserve">16. </s>
            <s xml:id="echoid-s3933" xml:space="preserve">Determinabitur maximus aſcenſus s t, faciendo v = o. </s>
            <s xml:id="echoid-s3934" xml:space="preserve">Igitur
              <lb/>
            ut motus omnis recte definiatur, alternatim adhibendæ erunt formulæ §. </s>
            <s xml:id="echoid-s3935" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3936" xml:space="preserve">3.
              <lb/>
            </s>
            <s xml:id="echoid-s3937" xml:space="preserve">& </s>
            <s xml:id="echoid-s3938" xml:space="preserve">14. </s>
            <s xml:id="echoid-s3939" xml:space="preserve">erutæ, quod nunc hoc unico illuſtrabo exemplo, quo nn = 1.</s>
            <s xml:id="echoid-s3940" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3941" xml:space="preserve">Si proinde nn = 1, fit v = b (1 - {α/ξ} - {1/2} (ξ - {αα/ξ}): </s>
            <s xml:id="echoid-s3942" xml:space="preserve">eritque
              <lb/>
            v = o, cum ſumitur ξ = 2b - α, id eſt, cum ſumitur V t = V y. </s>
            <s xml:id="echoid-s3943" xml:space="preserve">Igi-
              <lb/>
            tur ſi verbi gratia tubus A B M I aqua plenus, omnique fundo deſtitutus fue-
              <lb/>
            rit ad medietatem usque immerſus aquæ exteriori, atque tota ipſius longi-
              <lb/>
            tudo dicatur a, aqua ſic agitabitur ut primo infra T V deſcendat, ſpatio
              <lb/>
            o, 297a, deinde ſimili ſpatio ſuper eandem T V elevetur, rurſusque infra eam
              <lb/>
            deprimatur ſpatio o, 240a, eodemque lineam illam iterum tranſcendat, & </s>
            <s xml:id="echoid-s3944" xml:space="preserve">
              <lb/>
            ſic porro.</s>
            <s xml:id="echoid-s3945" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3946" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3947" xml:space="preserve">17. </s>
            <s xml:id="echoid-s3948" xml:space="preserve">Patet etiam cum α eſt = o, tubo ſcilicet ab omni aqua va-
              <lb/>
            cuo, fore generaliter v = {b/nn} - {ξ/nn + 1}: </s>
            <s xml:id="echoid-s3949" xml:space="preserve">aſcenſumquè integrum conſequen-
              <lb/>
            ter fore {nn + 1/nn}b vel aſcenſum ſupra ſuperficiem exteriorem aquæ = {b/nn}.</s>
            <s xml:id="echoid-s3950" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3951" xml:space="preserve">§. </s>
            <s xml:id="echoid-s3952" xml:space="preserve">18. </s>
            <s xml:id="echoid-s3953" xml:space="preserve">Venio nunc ad tubos infinite ſubmerſos, in quibus deſcenſum
              <lb/>
            cum ſuis affectionibus determinavimus §. </s>
            <s xml:id="echoid-s3954" xml:space="preserve">10. </s>
            <s xml:id="echoid-s3955" xml:space="preserve">Utemur autem eadem plane
              <lb/>
            methodo ad hunc caſum definiendum quâ ibi uſi ſumus: </s>
            <s xml:id="echoid-s3956" xml:space="preserve">erit nobis igitur
              <lb/>
            depreſſio initialis V y(= b - α) = c, aſcenſus inde factus y d (= ξ - α) = z.</s>
            <s xml:id="echoid-s3957" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>