154130
PROBL. XXXIII. PROP. LXXXIV.
Datæ Ellipſi, vel circulo, per terminos cuiuſcunque in ipſo ap-
plicatę MINIMAM Ellipſim circumſcribere, cuius tranſuerſum la-
tus æquale ſit dato, quod tamen maius ſit tranſuerſa diametro datæ
Ellipſis.
plicatę MINIMAM Ellipſim circumſcribere, cuius tranſuerſum la-
tus æquale ſit dato, quod tamen maius ſit tranſuerſa diametro datæ
Ellipſis.
SIt data Ellipſis, vel circulus ABCO, cuius tranſuerſa diameter BO, &
quædam ad eam applicata AC: oportet per terminos A, C, cum tranſ-
uerſo DE, quod excedat BO _MINIMAM_ Ellipſim circumſcribere.
quædam ad eam applicata AC: oportet per terminos A, C, cum tranſ-
uerſo DE, quod excedat BO _MINIMAM_ Ellipſim circumſcribere.
Ducatur ex A contingens AK productæ
121[Figure 121] diametro occurrens in K, & KF bifariam
ſecetur in puncto G, quod cadet iuter B, &
K, vt in 83. h. oſtenſum fuit; & ad datam
lineam DE applicetur parallelogrammum,
æquale quadrato GF, excedens figura
quadrata, ſitque rectangulum DHE, &
ſumpta HI media proportionali inter DH,
HE, erit rectangulum DHI, ſiue quadra-
tum GF, ęquale quadrato HI, hoc eſt linea
GF æqualis HI: ſumpta ergo GL æquali
HE, erit reliqua LF æqualis EI, & pũctum
L cadet extra B: quoniam cum ſit OK ad
KB, vt AF ad FB, ſitque KF bifariam 1136. pri-
mi conic. cta in G, erit rectangulum OGB æquale quadrato GF, ſiue quadrato 2279. h. ſiue rectangulo DHE; ſed eſt OB minor DE, ex conſtructione, quare GB
erit maior HE, ſiue maior GL; itaque punctum L cadet extra Ellipſim 3380. h. CO. Sumatur ampliùs FN æqualis ID, & erit tota LN æqualis datæ ED,
itemque punctum N cadet extra Ellipſim ABCO: Nam cum ſit rectangulum
DHE, ſiue NGL æquale quadrato HI, ſiue GF, ſitque rectangulum OGB,
æquale eidem quadrato GF, vt ſupra oſtendimus, erunt rectangula OGB,
NGL inter ſe æqualia, & ideo vt OG ad GN, ita LG ad GB, ſed eſt LG mi-
nor GB, vt ſuperiùs demonſtrauimus, vnde, & OG minor erit GN, nempe
punctum N cadet extra Ellipſim ABCO. Poſtremò cum tranſuerſo latere
NL, quod æquale eſt datæ lineæ DE, circa applicatam AC 44Coroll.
57. h. Ellipſis ALCN. Dico hanc eſſe _MINIMAM_ circumſcriptam quæſitam.
121[Figure 121] diametro occurrens in K, & KF bifariam
ſecetur in puncto G, quod cadet iuter B, &
K, vt in 83. h. oſtenſum fuit; & ad datam
lineam DE applicetur parallelogrammum,
æquale quadrato GF, excedens figura
quadrata, ſitque rectangulum DHE, &
ſumpta HI media proportionali inter DH,
HE, erit rectangulum DHI, ſiue quadra-
tum GF, ęquale quadrato HI, hoc eſt linea
GF æqualis HI: ſumpta ergo GL æquali
HE, erit reliqua LF æqualis EI, & pũctum
L cadet extra B: quoniam cum ſit OK ad
KB, vt AF ad FB, ſitque KF bifariam 1136. pri-
mi conic. cta in G, erit rectangulum OGB æquale quadrato GF, ſiue quadrato 2279. h. ſiue rectangulo DHE; ſed eſt OB minor DE, ex conſtructione, quare GB
erit maior HE, ſiue maior GL; itaque punctum L cadet extra Ellipſim 3380. h. CO. Sumatur ampliùs FN æqualis ID, & erit tota LN æqualis datæ ED,
itemque punctum N cadet extra Ellipſim ABCO: Nam cum ſit rectangulum
DHE, ſiue NGL æquale quadrato HI, ſiue GF, ſitque rectangulum OGB,
æquale eidem quadrato GF, vt ſupra oſtendimus, erunt rectangula OGB,
NGL inter ſe æqualia, & ideo vt OG ad GN, ita LG ad GB, ſed eſt LG mi-
nor GB, vt ſuperiùs demonſtrauimus, vnde, & OG minor erit GN, nempe
punctum N cadet extra Ellipſim ABCO. Poſtremò cum tranſuerſo latere
NL, quod æquale eſt datæ lineæ DE, circa applicatam AC 44Coroll.
57. h. Ellipſis ALCN. Dico hanc eſſe _MINIMAM_ circumſcriptam quæſitam.
Quoniam cum ſit rectangulum NGL æquale quadrato GF, erit NG ad
GF, vt GF ad GL, & componendo, NG cum GF, ſiue NK, erit ad GF, vt
FG cum GL, ſiue vt KL ad GL, & permutando NK ad KL, vt GF ad GL,
vel vt NG ad GF, vel vt NF ad FL, ergo recta KAM Ellipſim ALCN 55Coroll.
12. h. tingit in A, ſed eadem KAM contingit quoque ad idem punctum A 664. h. pſim ABCO: quapropter Ellipſis ALCN datæ ABCO erit circumſcripta. 7761. h. At ipſa erit _MINIMA_: nam quælibet alia, quæ ipſi adſcribitur per eoſdem
terminos communis applicatæ AC, & cum tranſuerſa diametro æquali ipſi
LN, _licet maior ſuerit eadem ALCN_, inſcriptam ABCO omnino ſecat; 8883. h.
GF, vt GF ad GL, & componendo, NG cum GF, ſiue NK, erit ad GF, vt
FG cum GL, ſiue vt KL ad GL, & permutando NK ad KL, vt GF ad GL,
vel vt NG ad GF, vel vt NF ad FL, ergo recta KAM Ellipſim ALCN 55Coroll.
12. h. tingit in A, ſed eadem KAM contingit quoque ad idem punctum A 664. h. pſim ABCO: quapropter Ellipſis ALCN datæ ABCO erit circumſcripta. 7761. h. At ipſa erit _MINIMA_: nam quælibet alia, quæ ipſi adſcribitur per eoſdem
terminos communis applicatæ AC, & cum tranſuerſa diametro æquali ipſi
LN, _licet maior ſuerit eadem ALCN_, inſcriptam ABCO omnino ſecat; 8883. h.