Viviani, Vincenzo, De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei

Table of figures

< >
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
< >
page |< < (131) of 347 > >|
155131 ALCO eſt _MINIMA_ circumſcripta datæ Ellipſi ABCO, per terminos ap-
plicatæ AC, cum dato tranſuerſo DE:
immo ipſa ALCN vnica eſt, his con-
ditionibus circumſcriptibilis.
Quod faciendum, & demonſtrandum erat.
SCHOLIVM.
SIquæratur, qua nam ratione in prop. 82. ad finem, dicatur _licet minor fue-_
_rit eadem ALCN_ in hac verò, _licet maior fuerit eadem ALCN_ (perinde ac
ſi, per terminos A, C, cum diametro æquali ipſi LN alia in ea deſcribi poſſit
Ellipſis minor ALCN, in hac verò alia maior ALCN) vtrunq;
noshaud te-
merè dixiſſe ex ſequéti Theoremate manifeſtum fiet, à quo habebitur quam-
libet aliam Ellipſim per A, C, adſcriptam, cum tranſuerſo ęquali ipſi LN, ſed
cuius ſegmenta ab applicata AC abſciſſa, ſint magis inæqualia quàm ſint ſe-
gmenta NF, FL, minorem eſſe ipſa ALCN;
& è contra, eam quę cum ſegmentis
minus inæqualibus, quàm ſint NF, FL, eadem ALCN maiorem eſſe.
THEOR. XL. PROP. LXXXV.
Ellipſium, perterminos communis applicatæ ſimul adſcripta-
rum, &
quarum tranſuerſa latera ſint æqualia, MINIMA eſt ea,
cuius communis ordinatim ducta ſit diameter coniugata:
aliarum
verò illa, cuius ſegmenta diametri ſunt minùs inæqualia, minor eſt
ea, cuius diametri ſegmenta ſunt magis inæqualia.
SInt duę Ellipſes ABCD, AECF, per terminos eiuſdem applicatæ AC
ſimul adſcriptæ, &
quarum tranſuerſa BD, EF ſint æqualia, ſitq; AGC
coniugata diameter Ellipſis ABCD, ſiue G eius centrum.
Dico primùm
hanc minorem eſſe altera AECF, ſiue eſſe _MINIMAM_, &
c.
Etenim, cum ſit DB æqualis EF, & DB
122[Figure 122] bifariam ſecta in G, erit EF in pũcto Ginæ-
qualiter ſecta, vnde rectangulum BGD ma-
ius erit rectangulo EGF, cum ſit 1160. h. _MVM_;
ideoque rectangulum BGD ad qua-
dratum AG, ſiue tranſuerſum BD ad 2221. pri-
mi conic.
ctum Ellipſis ABCD, maiorem habebit ra-
tionem quàm rectangulum EGF ad idem
quadratum AG, ſiue quàm 33ibidem. EF ad rectum Ellipſis AECF:
ſed tranſuerſa
BD, EF ſunt æqualia, ergo rectũ Ellipſis AB
CD, minus erit recto AECF:
ſi igitur Ellipſis
huiuſmodi Ellipſes (cum ſint ęqualiter incli-
natæ) concipiantur eſſe per eundem verticem ſimul adſcriptæ, ita vt tranſ-
uerſæ diametri ſimul congruant, ipſa ABCD, cuius rectum minus eſt, inſcri-
pta erit, ſiue minor AECF, cuius rectum maius eſt, &
ſic minor 442. Co-
roll. 19. h.
alia, cuius diametri ſegmenta ſint inæqualia:
quare ABCD erit _MINI-_
_MA_, &
c.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index