Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
161
162
163
164
165
166
167
168
169
170
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/158.jpg
"
pagenum
="
130
"/>
<
arrow.to.target
n
="
note106
"/>
dex eſt (
<
emph
type
="
italics
"/>
nn/mm
<
emph.end
type
="
italics
"/>
)-3. Id quod per Exempla ſecunda manifeſtum eſt. </
s
>
<
s
>
<
lb
/>
Unde liquet vim illam in majore quam triplicata altitudinis ratione,
<
lb
/>
in receſſu a centro, decreſcere non poſſe: Corpus tali vi revolvens
<
lb
/>
deque Apſide diſcedens, ſi cæperit deſcendere nunquam perveniet
<
lb
/>
ad Apſidem imam ſeu altitudinem minimam, ſed deſcendet uſque ad
<
lb
/>
centrum, deſcribens Curvam illam lineam de qua egimus in Cor. </
s
>
<
s
>3.
<
lb
/>
Prop. </
s
>
<
s
>XLI. </
s
>
<
s
>Sin cæperit illud, de Apſide diſcedens, vel minimum
<
lb
/>
aſcendere; aſcendet in infinitum, neque unquam perveniet ad Ap
<
lb
/>
ſidem ſummam. </
s
>
<
s
>Deſcribet enim Curvam illam lineam de qua ac
<
lb
/>
tum eſt in eodem Corol. </
s
>
<
s
>& in Corol. </
s
>
<
s
>6, Prop. </
s
>
<
s
>XLIV. </
s
>
<
s
>Sic & ubi
<
lb
/>
vis, in receſſu a centro, decreſcit in majore quam triplicata ratione
<
lb
/>
altitudinis, corpus de Apſide diſcedens, perinde ut cæperit deſcen
<
lb
/>
dere vel aſcendere, vel deſcendet ad centrum uſque vel aſcendet
<
lb
/>
in infinitum. </
s
>
<
s
>At ſi vis, in receſſu a centro, vel decreſcat in minore
<
lb
/>
quam triplicata ratione altitudinis, vel creſcat in altitudinis ratione
<
lb
/>
quacunque; corpus nunquam deſcendet ad centrum uſque, ſed ad
<
lb
/>
Apſidem imam aliquando perveniet: & contra, ſi corpus de Apſi
<
lb
/>
de ad Apſidem alternis vicibus deſcendens & aſcendens nunquam
<
lb
/>
appellat ad centrum; vis in receſſu a centro aut augebitur, aut in
<
lb
/>
minore quam triplicata altitudinis ratione decreſcet: & quo ci
<
lb
/>
tius corpus de Apſide ad Apſidem redierit, eo longius ratio virium
<
lb
/>
recedet a ratione illa triplicata. </
s
>
<
s
>Ut ſi corpus revolutionibus 8 vel
<
lb
/>
4 vel 2 vel 1 1/2 de Apſide ſumma ad Apſidem ſummam alterno de
<
lb
/>
ſcenſu & aſcenſu redierit; hoc eſt, ſi fuerit
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
ut 8 vel 4 vel
<
lb
/>
2 vel 1 1/2 ad 1, adeoque (
<
emph
type
="
italics
"/>
nn/mm
<
emph.end
type
="
italics
"/>
)-3 valeat (1/64)-3 vel (1/16) -3 vel 1/4-3
<
lb
/>
vel 4/9-3: erit vis ut A
<
emph
type
="
sup
"/>
(1/64)-3
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
(1/16)-3
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
1/4-3
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
4/9-3
<
emph.end
type
="
sup
"/>
,
<
lb
/>
id eſt, reciproce ut A
<
emph
type
="
sup
"/>
3-(1/64)
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
3-(1/16)
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
3-1/4
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
3-4/9
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>
<
lb
/>
Si corpus ſingulis revolutionibus redierit ad Apſidem eandem immo
<
lb
/>
tam; erit
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
ut 1 ad 1, adeoque A (
<
emph
type
="
italics
"/>
nn/mm
<
emph.end
type
="
italics
"/>
)-3 æqualis A
<
emph
type
="
sup
"/>
-2
<
emph.end
type
="
sup
"/>
ſeu (1/AA
<
gap
/>
)
<
lb
/>
& propterea decrementum virium in ratione duplicata altitudinis,
<
lb
/>
ut in præcedentibus demonſtratum eſt. </
s
>
<
s
>Si corpus partibus revo
<
lb
/>
lutionis unius vel tribus quartis, vel duabus tertiis, vel una ter
<
lb
/>
tia, vel una quarta, ad Apſidem eandem redierit; erit
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
1/4 vel 2/3 vel 1/3 vel 1/4 ad 1, adeoque A(
<
emph
type
="
italics
"/>
nn/mm
<
emph.end
type
="
italics
"/>
)-3 æqualis A
<
emph
type
="
sup
"/>
(16/9)-3
<
emph.end
type
="
sup
"/>
vel
<
lb
/>
A
<
emph
type
="
sup
"/>
9/4-3
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
9-3
<
emph.end
type
="
sup
"/>
vel A
<
emph
type
="
sup
"/>
16-3
<
emph.end
type
="
sup
"/>
; & propterea vis aut reciproce ut </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>