Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(138)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div342
"
type
="
section
"
level
="
1
"
n
="
210
">
<
p
>
<
s
xml:id
="
echoid-s3272
"
xml:space
="
preserve
">
<
pb
o
="
138
"
file
="
0158
"
n
="
158
"
rhead
="
GEOMETRIÆ
"/>
nam, 9 {10/ } {11/ }, collectę erunt. </
s
>
<
s
xml:id
="
echoid-s3273
"
xml:space
="
preserve
">Si igitur hoc fiat in cęteris figuris, quę
<
lb
/>
in ſolidis, HZ {00/ }, Σ Γ 2, ipſis tangentibus planis æquidiſtant, tandem
<
lb
/>
habebimus duo ſolida, quæ ſint, LDFG, 3687, æqualia duobus
<
lb
/>
ſolidis, HZ {00/ }, Σ Γ 2, ſeu duobus, AP, V &</
s
>
<
s
xml:id
="
echoid-s3274
"
xml:space
="
preserve
">, LDGF, nempè ipſi,
<
lb
/>
AP, &</
s
>
<
s
xml:id
="
echoid-s3275
"
xml:space
="
preserve
">, 3687, ipſi, V &</
s
>
<
s
xml:id
="
echoid-s3276
"
xml:space
="
preserve
">, nam omnia eorum plana, regulis oppo-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-01
"
xlink:href
="
note-0158-01a
"
xml:space
="
preserve
">3. huius.</
note
>
ſitis tangentibus planis, ſunt inter ſe æqualia ex conſtructione. </
s
>
<
s
xml:id
="
echoid-s3277
"
xml:space
="
preserve
">Sed
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3278
"
xml:space
="
preserve
">hæc ſolida, LDGF, 3687, dico eſſe inter ſe ſimilia: </
s
>
<
s
xml:id
="
echoid-s3279
"
xml:space
="
preserve
">Cum .</
s
>
<
s
xml:id
="
echoid-s3280
"
xml:space
="
preserve
">n.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3281
"
xml:space
="
preserve
">
<
figure
xlink:label
="
fig-0158-01
"
xlink:href
="
fig-0158-01a
"
number
="
92
">
<
image
file
="
0158-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0158-01
"/>
</
figure
>
præfatis oppoſitis tangentibus planis (quæ ſunt etiam oppoſita tan-
<
lb
/>
gentia plana ſolidorum, LDGF, 3687,) incidant quoq; </
s
>
<
s
xml:id
="
echoid-s3282
"
xml:space
="
preserve
">duo pla-
<
lb
/>
na, LT, 3, {13/ }, ad eundem angulum ex eadem parte (ſunt .</
s
>
<
s
xml:id
="
echoid-s3283
"
xml:space
="
preserve
">n. </
s
>
<
s
xml:id
="
echoid-s3284
"
xml:space
="
preserve
">prima
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-02
"
xlink:href
="
note-0158-02a
"
xml:space
="
preserve
">26. lib. 1.</
note
>
plana, HG, Σ 8, oppoſitis tangentibus planis æquè, & </
s
>
<
s
xml:id
="
echoid-s3285
"
xml:space
="
preserve
">ad eandem
<
lb
/>
partem, inclinata, & </
s
>
<
s
xml:id
="
echoid-s3286
"
xml:space
="
preserve
">anguli, TG {00/ }, {13/ } 82, æquales inter ſe, nec-
<
lb
/>
non anguli, LG {00/ }, 382, vnde etiam ſecunda plana ad eadem tan-
<
lb
/>
gentia plana ſunt ad eundem angulum ex eadem parte. </
s
>
<
s
xml:id
="
echoid-s3287
"
xml:space
="
preserve
">Sint verò
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0158-03
"
xlink:href
="
note-0158-03a
"
xml:space
="
preserve
">26. lib. 1.</
note
>
figuræ ex planis inclinata oppoſitis tangentibus parallelis, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>