Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota
page |< < (138) of 569 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div342" type="section" level="1" n="210">
          <p>
            <s xml:id="echoid-s3272" xml:space="preserve">
              <pb o="138" file="0158" n="158" rhead="GEOMETRIÆ"/>
            nam, 9 {10/ } {11/ }, collectę erunt. </s>
            <s xml:id="echoid-s3273" xml:space="preserve">Si igitur hoc fiat in cęteris figuris, quę
              <lb/>
            in ſolidis, HZ {00/ }, Σ Γ 2, ipſis tangentibus planis æquidiſtant, tandem
              <lb/>
            habebimus duo ſolida, quæ ſint, LDFG, 3687, æqualia duobus
              <lb/>
            ſolidis, HZ {00/ }, Σ Γ 2, ſeu duobus, AP, V &</s>
            <s xml:id="echoid-s3274" xml:space="preserve">, LDGF, nempè ipſi,
              <lb/>
            AP, &</s>
            <s xml:id="echoid-s3275" xml:space="preserve">, 3687, ipſi, V &</s>
            <s xml:id="echoid-s3276" xml:space="preserve">, nam omnia eorum plana, regulis oppo-
              <lb/>
              <note position="left" xlink:label="note-0158-01" xlink:href="note-0158-01a" xml:space="preserve">3. huius.</note>
            ſitis tangentibus planis, ſunt inter ſe æqualia ex conſtructione. </s>
            <s xml:id="echoid-s3277" xml:space="preserve">Sed
              <lb/>
            & </s>
            <s xml:id="echoid-s3278" xml:space="preserve">hæc ſolida, LDGF, 3687, dico eſſe inter ſe ſimilia: </s>
            <s xml:id="echoid-s3279" xml:space="preserve">Cum .</s>
            <s xml:id="echoid-s3280" xml:space="preserve">n.
              <lb/>
            </s>
            <s xml:id="echoid-s3281" xml:space="preserve">
              <figure xlink:label="fig-0158-01" xlink:href="fig-0158-01a" number="92">
                <image file="0158-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0158-01"/>
              </figure>
            præfatis oppoſitis tangentibus planis (quæ ſunt etiam oppoſita tan-
              <lb/>
            gentia plana ſolidorum, LDGF, 3687,) incidant quoq; </s>
            <s xml:id="echoid-s3282" xml:space="preserve">duo pla-
              <lb/>
            na, LT, 3, {13/ }, ad eundem angulum ex eadem parte (ſunt .</s>
            <s xml:id="echoid-s3283" xml:space="preserve">n. </s>
            <s xml:id="echoid-s3284" xml:space="preserve">prima
              <lb/>
              <note position="left" xlink:label="note-0158-02" xlink:href="note-0158-02a" xml:space="preserve">26. lib. 1.</note>
            plana, HG, Σ 8, oppoſitis tangentibus planis æquè, & </s>
            <s xml:id="echoid-s3285" xml:space="preserve">ad eandem
              <lb/>
            partem, inclinata, & </s>
            <s xml:id="echoid-s3286" xml:space="preserve">anguli, TG {00/ }, {13/ } 82, æquales inter ſe, nec-
              <lb/>
            non anguli, LG {00/ }, 382, vnde etiam ſecunda plana ad eadem tan-
              <lb/>
            gentia plana ſunt ad eundem angulum ex eadem parte. </s>
            <s xml:id="echoid-s3287" xml:space="preserve">Sint verò
              <lb/>
              <note position="left" xlink:label="note-0158-03" xlink:href="note-0158-03a" xml:space="preserve">26. lib. 1.</note>
            figuræ ex planis inclinata oppoſitis tangentibus parallelis, </s>
          </p>
        </div>
      </text>
    </echo>