Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of contents

< >
[Item 1.]
[2.] CHRISTIANI HUGENII AZULICHEM, Dum viveret Zelhemi Toparchæ, OPERA VARIA. Volumen Secundum.
[3.] Lugduni Batavorum, Apud JANSSONIOS VANDER A@, Bibliopolas. MDCCXXIV.
[4.] MAX-PLANCK-INSTITUT FOR WISSENSCHAFTSGESCHICHTE Bibliothek
[5.] CHRISTIANI HUGENII OPERA GEOMETRICA. Tomus Secundus.
[6.] Tomi ſecundi contenta.
[7.] CHRISTIANI HUGENII, Const. F. THEOREMATA DE QUADRATURA HYPERBOLES, ELLIPSIS ET CIRCULI, EX DATO PORTIONUM GRAVITATIS CENTRO. Quibus ſubjuncta eſt Ε’ξέ{τα}{σι}ς Cyclometriæ Cl. Viri Gregorii à S. Vincentio, editæ Anno CIɔ Iɔcxlvii.
[8.] AD LECTOREM.
[9.] CHRISTIANI HUGENII, Const. F. THEOREMATA DE QUADRATURA HYPERBOLES, ELLIPSIS, ET CIRCULI, EX DATO PORTIONUM GRAVITATIS CENTRO Theorema I.
[10.] Theorema II.
[11.] Theorema III.
[12.] Theorema IV.
[13.] Lemma.
[14.] Theorema V.
[15.] Theorema VI.
[16.] Theorema VII.
[17.] Theorema VIII.
[18.] ἘΞἘΤΑΣΙΣ CYCLOMETRIÆ CLARISSIMI VIRI, GREGORII à S. VINCENTIO, S. J. Editæ Anno D. cIↄ Iↄc XLVII.
[19.] FINIS.
[20.] CHRISTIANI HUGENII, Const. F. AD C. V. FRAN. XAVERIUM AINSCOM. S.I. EPISTOLA, Qua diluuntur ea quibus Ε’ξε{τα}{σι}ς Cyclometriæ Gregorii à Sto. Vincentio impugnata fuit.
[21.] CHRISTIANI HUGENII, Const. F. AD C. V. FRAN. XAVERIUM AINSCOM. S. I. EPISTOLA. Cl. Viro D°. XAVERIO AINSCOM CHRISTIANUS HUGENIUS S. D.
[22.] CHRISTIANI HUGENII, Const. F. DE CIRCULI MAGNITUDINE INVENTA. ACCEDUNT EJUSDEM Problematum quorundam illuſtrium Conſtructiones.
[23.] PRÆFATIO.
[24.] CHRISTIANI HUGENII, Const. f. DE CIRCULI MAGNITUDINE INVENTA. Theorema I. Propositio I.
[25.] Theor. II. Prop. II.
[26.] Theor. III. Prop. III.
[27.] Theor. IV. Prop. IV.
[28.] Theor. V. Prop. V.
[29.] Theor. VI. Prop. VI.
[30.] Theor. VII. Prop. VII.
< >
page |< < (316) of 568 > >|
16316THEOR. DE QUADRAT. minor erit dato ſpatio; ſit ea parallelogrammum B F, & di-
vidatur baſis A C in partes æquales ipſi D F, punctis
G, H, K &
c. atque inde ducantur ad ſectionem rectæ
G L, H M, K N &
c. diametro B D parallelæ, & perfi-
ciantur parallelogramma D O, G P, H Q, K R &
c. Di-
co figuram ex omnibus iſtis parallelogrammis compoſitam
(quæ impoſterum ordinatè circumſcripta vocabitur) ſupera-
re portionem A B C minori quàm datum ſit ſpatio.
Jungantur enim A N, N M, M L, L B, B S, & c.
eritque hac ratione inſcripta quoque portioni figura quædam
rectilinea;
majorque erit exceſſus figuræ circumſcriptæ quæ
ex parallelogrammis compoſita eſt, ſuper inſcriptam, quàm
ſupra portionem A B C.
Exceſſus autem circumſcriptæ ſuper
inſcriptam ex triangulis conſtat, quorum quæ ſunt ab una
diametri parte, ut A R N, N Q M, M P L, L O B,
æquantur dimidio parallelogrammi O D vel B F, quia ſin-
gulorum baſes baſi D F æquales ſunt, &
omnium ſimul al-
titudo, parallelogrammi B F altitudini.
Eâdem ratione trian-
gula qu&
ſunt ab altera diametri parte, æquantur dimidio
parallelogrammi B F:
Ergo omnia ſimul triangula ſive di-
ctus exceſſus æqualis eſt parallelogrammo B F, eóque mi-
nor ſpatio dato.
Sed eodem exceſſu adhuc minor erat ex-
ceſſus figuræ circumſcriptæ ſupra portionem A B C:
igitur
hic exceſſus dato ſpatio multo minor eſt.
Et apparet fieri
poſſe quod proponebatur.
Theorema II.
DAtâ portione hyperboles, vel ellipſis vel circuli
portione, dimidiâ ellipſi dimidiove circulo non
majore, &
dato triangulo qui baſin habeat baſi por-
tionis æqualem;
poteſt utrique figura circumſcribi ex
parallelogrammis quorum ſit omnium eadem latitu-
do, ita ut uterque ſimulexceſſus quo figuræ circum-
ſcriptæ portionem &
triangulum ſuperant, ſit minor
ſpatio quovis dato.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index