Alvarus, Thomas
,
Liber de triplici motu
,
1509
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
Table of figures
<
1 - 14
>
[Figure 11]
Page: 131
[Figure 12]
Page: 210
[Figure 13]
Page: 275
[Figure 14]
Page: 285
<
1 - 14
>
page
|<
<
of 290
>
>|
<
echo
version
="
1.0
">
<
text
xml:lang
="
la
">
<
div
xml:id
="
N10132
"
level
="
1
"
n
="
1
"
type
="
body
">
<
div
xml:id
="
N10136
"
level
="
2
"
n
="
1
"
type
="
other
"
type-free
="
pars
">
<
div
xml:id
="
N11397
"
level
="
3
"
n
="
6
"
type
="
chapter
"
type-free
="
capitulum
">
<
p
xml:id
="
N113C9
">
<
s
xml:id
="
N113CD
"
xml:space
="
preserve
">
<
pb
chead
="
Prime partis
"
file
="
0016
"
n
="
16
"/>
et ſic cõſequenter / vt capite quarto oſtenſum eſt: de
<
lb
/>
bet ꝓ prima parte capi exceſſus quo maior quan-
<
lb
/>
titas excedit minorem ita reſiduum a prima ſit
<
lb
/>
minor quantitas et totum corpus ſit maior quan-
<
lb
/>
titas talis proportionis. </
s
>
<
s
xml:id
="
N113E5
"
xml:space
="
preserve
">Probatur hec cõcluſio
<
lb
/>
ex precedenti / quoniam totū corpus diuiſum pro-
<
lb
/>
portiõe aliqua irrationali ſe debet habere ad ag
<
lb
/>
gregatum ex omnibus ſequentibus primam tali
<
lb
/>
diuiſione: in ea proportione qua ipſum corpus di
<
lb
/>
uiditur: igitur oportet / totum corpus ſe habeat
<
lb
/>
vt maior quantitas talis proportionis: et aggre-
<
lb
/>
gatum ex omnibus ſequentibus primam vt minor
<
lb
/>
quantitas: et per conſequens exceſſus / quo totum
<
lb
/>
corpus excedit aggregatum ex omnibus ſequen-
<
lb
/>
tibus primã erit prima pars proportionalis tali
<
lb
/>
proportione. </
s
>
<
s
xml:id
="
N113FE
"
xml:space
="
preserve
">Patet conſequentia / quia reſiduum
<
lb
/>
eſt aggregatū ex omnibus aliis a prima: ille igit̄̄
<
lb
/>
exceſſus erit prima / quod fuit probandū.
<
note
position
="
left
"
xlink:href
="
note-0016-01a
"
xlink:label
="
note-0016-01
"
xml:id
="
N114DE
"
xml:space
="
preserve
">Primuꝫ
<
lb
/>
correlari
<
lb
/>
um.</
note
>
</
s
>
<
s
xml:id
="
N1140A
"
xml:space
="
preserve
">¶ Ex hac
<
lb
/>
concluſione ſequitur primo / ad diuidendum cor
<
lb
/>
pus proportione irrationali diametri ad coſtam
<
lb
/>
oportet / pro prima parte proportionali capere ex
<
lb
/>
ceſſum quo diameter excedit coſtam: et pro ſecūda
<
lb
/>
capere etiam exceſſum / quo illa coſta cum eſt dia-
<
lb
/>
meter quadrati excedit coſtam illius quadrati / et
<
lb
/>
ſic conſequenter: et addandam primã partem pro
<
lb
/>
portionale proportionis irrationalis / que eſt ag-
<
lb
/>
gregati ex coſta et medietate exceſſus diametri ad
<
lb
/>
ipſam coſtam capiatur pro prima parte propor-
<
lb
/>
tionali illa medietas exceſſus: et pro ſecūda parte
<
lb
/>
proportiõali capiatur tanta pars reſidui ad quã
<
lb
/>
prima habeat illam proportionem / que eſt totius
<
lb
/>
corporis ad aggregatum ex omnibus ſequen-
<
lb
/>
tibus primam: et iterum in reſiduo a prima parte
<
lb
/>
et ſecunda, pro tertia parte capiatur tanta pars
<
lb
/>
ad quam ſecunda habeat illam proportionē quã
<
lb
/>
prima habet ad ipſam: et ſic cõſequenter. </
s
>
<
s
xml:id
="
N11431
"
xml:space
="
preserve
">Et ſimili
<
lb
/>
modo operandum eſſet / ſi diuideretur corpus pro
<
lb
/>
portione irrationali / que eſt aggregati ex coſta et
<
lb
/>
q̈rta parte, vel octaua, vel decimaſexta exceſſus / q̇
<
lb
/>
diameter excedit coſtã ad ipſã coſtã. </
s
>
<
s
xml:id
="
N1143C
"
xml:space
="
preserve
">Ptꝫ correla-
<
lb
/>
riū ex cõcluſione addita ſuppoſitiõe ſecunda pre
<
lb
/>
cedētis capitis: ille enim partes infinite continue
<
lb
/>
ſe habent in proportione diuiſionis et totum ab-
<
lb
/>
ſoluūt.
<
note
position
="
left
"
xlink:href
="
note-0016-02a
"
xlink:label
="
note-0016-02
"
xml:id
="
N114E8
"
xml:space
="
preserve
">Secūduꝫ
<
lb
/>
correlar̄.</
note
>
</
s
>
<
s
xml:id
="
N1144C
"
xml:space
="
preserve
">¶ Sequitur ſecundo / diuiſo corpore per
<
lb
/>
partes proportionales proportione irrationali /
<
lb
/>
que eſt diametri ad coſtam: omnes partes impa-
<
lb
/>
res continuo ſe habent in proportione dupla: et
<
lb
/>
omnes pares ſimiliter: et oēs due inter quas me-
<
lb
/>
diant due ſe habent continuo in proportione ſex-
<
lb
/>
quialtera ad duplam: et omnes inter quas mediãt
<
lb
/>
tres ſe habent in proportione quadrupla: et ſic cõ
<
lb
/>
ſequenter. </
s
>
<
s
xml:id
="
N1145F
"
xml:space
="
preserve
">Probatur / quia proportio que eſt pri-
<
lb
/>
me partis proportionalis ad tertiam componi-
<
lb
/>
tur ex duabus proportionibus equalibus quarū
<
lb
/>
vtra eſt medietas duple: ergo ſequitur / illa eſt
<
lb
/>
dupla. </
s
>
<
s
xml:id
="
N1146A
"
xml:space
="
preserve
">Patet conſequentia: et probatur antece-
<
lb
/>
dens: quia componitur illa proportio ex propor-
<
lb
/>
tione prime partis ad ſecundam que eſt medietas
<
lb
/>
duple: et ex proportione ſecunde ad tertiã que etiã
<
lb
/>
eſt medietas duple: quoniam proportio diametri
<
lb
/>
ad coſtã eſt medietas duple: vt patet ex tertia ſup
<
lb
/>
poſitione tertii capitꝪ. </
s
>
<
s
xml:id
="
N11479
"
xml:space
="
preserve
">Et ſic probabis de quibuſ-
<
lb
/>
cun duabus partibus paribus īmediatis: et etiã
<
lb
/>
īparibus. </
s
>
<
s
xml:id
="
N11480
"
xml:space
="
preserve
">Sed iam probo partes inter quas me-
<
lb
/>
diant due ſe habere in proportione ſexquialtera
<
lb
/>
ad duplam quia proportio inter tales partes cõ-
<
cb
chead
="
Capitulum ſextū.
"/>
ponitur ex proportione prime ad ſecundam: et ſe-
<
lb
/>
cunde ad tertiam: et tertie ad quartam: ſed pro-
<
lb
/>
portio prime ad tertiam eſt dupla: vt patet ex pro
<
lb
/>
batione precedentis partis: et proportio tertie ad
<
lb
/>
quartam eſt proportio que eſt medietas duple: vt
<
lb
/>
conſtat: ergo proportio prime ad quartam con-
<
lb
/>
tinet duplam et medietateꝫ duple adequate: et per
<
lb
/>
conſequēs talis proportio que eſt prime ad quar-
<
lb
/>
tam eſt ſexquialtera ad duplam. </
s
>
<
s
xml:id
="
N1149A
"
xml:space
="
preserve
">Patet hec conſe
<
lb
/>
quentia ex diffinitione ſexquialtere. </
s
>
<
s
xml:id
="
N1149F
"
xml:space
="
preserve
">Et ſic proba-
<
lb
/>
bis de aliis huiuſcemodi partibus. </
s
>
<
s
xml:id
="
N114A4
"
xml:space
="
preserve
">Sed iam ꝓbo
<
lb
/>
tertiam parteꝫ / quia proportio partiū inter quas
<
lb
/>
manent tres cuiuſmodi eſt proportio prime par-
<
lb
/>
tis ad quintaꝫ cõponitur ex duabus duplis: puta
<
lb
/>
ex proportione que eſt prime ad tertiaꝫ et tertie ad
<
lb
/>
quintam que ſunt duple: vt patet ex prima parte
<
lb
/>
huius correlarii: et per conſequens talis propor-
<
lb
/>
tio prime ad quintam eſt dupla ad duplam cū con
<
lb
/>
tineat ipſam duplam bis: et per conſequens qua-
<
lb
/>
drupla. </
s
>
<
s
xml:id
="
N114B9
"
xml:space
="
preserve
">Patet conſequētia ex diffinitione duple
<
lb
/>
et ſecunda parte. </
s
>
<
s
xml:id
="
N114BE
"
xml:space
="
preserve
">Et hoc modo probabis de omni
<
lb
/>
bus ſimilibus. </
s
>
<
s
xml:id
="
N114C3
"
xml:space
="
preserve
">Patet hoc correlarium ſenſui in fi
<
lb
/>
gura ſequēti / in qua prima pars eſt diameter qua
<
lb
/>
drati maioris ibidem poſiti: et ſecunda eſt coſta
<
lb
/>
eiuſdem quadrati: et tertia eſt coſta quadrati ſe-
<
lb
/>
quentis: et tertia eſt coſta tertii quadrati: et diame
<
lb
/>
ter quarti: et quarta eſt coſta quarti quadrati: et
<
lb
/>
diametri quinti: et quinta eſt coſta ipſius quinti
<
lb
/>
quadrati: et ſic in infinitum poteris procedere ibi
<
lb
/>
n. conſpicies / prime ad tertiã eſt proportio du-
<
lb
/>
pla et ſecunde ad quartam etiam dupla: et prime
<
lb
/>
ad quintam eſt quadrupla.</
s
>
</
p
>
<
figure
xml:id
="
N114F0
"
number
="
4
">
<
image
file
="
0016-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/YHKVZ7B4/figures/0016-01
"/>
</
figure
>
<
note
position
="
right
"
xml:id
="
N114F4
"
xml:space
="
preserve
">Tertium
<
lb
/>
correlar̄.</
note
>
<
p
xml:id
="
N114FA
">
<
s
xml:id
="
N114FB
"
xml:space
="
preserve
">¶ Ex quo ſequitur tertio / in tali diuiſiõe aggre-
<
lb
/>
gatuꝫ ex oībus īparibus a prima īpari eſt equale
<
lb
/>
ṗme: et aggregatū ex oībus paribꝰ a ſecunda q̄ eſt
<
lb
/>
prima par eſt equale ſecunde: et aggregatum ex
<
lb
/>
oībus imparibus ſe habet ad aggregatum ex om
<
lb
/>
nibus paribus in proportione que eſt medietas
<
lb
/>
duple. </
s
>
<
s
xml:id
="
N1150A
"
xml:space
="
preserve
">Probatur prima pars huius correlarii /
<
lb
/>
quia partes impares continuo ſe habent in pro-
<
lb
/>
portione dupla / vt patet ex proximo correlario:
<
lb
/>
igitur reſiduum ex omnibus īparibus ſequētibus
<
lb
/>
primã imparem eſt equale prime impari. </
s
>
<
s
xml:id
="
N11515
"
xml:space
="
preserve
">Patet
<
lb
/>
conſequentia ex ſecundo correlario tertie conclu-
<
lb
/>
ſionis quinti capitis. </
s
>
<
s
xml:id
="
N1151C
"
xml:space
="
preserve
">Et eodem modo probabis
<
lb
/>
ſecundam partem. </
s
>
<
s
xml:id
="
N11521
"
xml:space
="
preserve
">Sed iam probatur tertia / quo-
<
lb
/>
niam medietas aggregati ex omnibus impari-
<
lb
/>
bus ſe habet ad medietatem aggregati ex omni-
<
lb
/>
bus paribus in proportione que eſt medietas du-
<
lb
/>
ple: ergo totum aggregatum imparium ſe habet
<
lb
/>
ad totum aggregatuꝫ parium in proportione du-
<
lb
/>
pla. </
s
>
<
s
xml:id
="
N11530
"
xml:space
="
preserve
">Patet conſequentia / per hanc regulam in
<
lb
/>
quacun proportione ſe habent partes aliquote
<
lb
/>
aliquarum quantitatum eiuſdem denominatio-
<
lb
/>
nis in eadem ſe habent et ille quantitates totales /
<
lb
/>
et per conſequens in proportione qua ſe habent
<
lb
/>
due medietates aliquoꝝ in eadē ſe hñt tota illarū
<
lb
/>
medietatū. </
s
>
<
s
xml:id
="
N1153F
"
xml:space
="
preserve
">Sed ꝓbat̄̄ añs / q2 prima pars ꝓporti-
<
lb
/>
onalis īpar ſe habet ad ṗmã parē: que eſt ſecūda.
<
lb
/>
</
s
>
<
s
xml:id
="
N11545
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>