Commandino, Federico, Liber de centro gravitatis solidorum, 1565

Page concordance

< >
Scan Original
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
< >
page |< < of 101 > >|
1triangulum mkφ triangulo nkφ. ergo anguli lzk, ozk,
m φ k, nφk æquales ſunt, ac recti.
quòd cum etiam recti

ſint, qui ad k; æquidiſtabunt lineæ lo, mn axi bd.
& ita
demonſtrabuntur lm, on ipſi ac æquidiſtare.
Rurſus ſi
iungantur
al, lb, bm, mc, cn, nd, do, oa: & bifariam di
uidantur: à centro autem k ad diuiſiones ductæ lineæ pro­
trahantur uſque ad ſectionem in puncta pqrstuxy: & po
ſtremo py, qx, ru, st, qr, ps, yt, xu coniungantur.
Simili­
8[Figure 8]
ter oſtendemus lineas
py, qx, ru, st axi bd æ­
quidiſtantes eſſe: & qr,
ps, yt, xu æquidiſtan­
tes ipſi ac.
Itaque dico
harum figurarum in el­
lipſi deſcriptarum cen­
trum grauitatis eſſe pun­
ctum
k, idem quod & el
lipſis centrum.
quadri­
lateri enim abcd cen­
trum eſt k, ex decima
iuſdem libri Archime­
dis, quippe cum in eo om
nes diametri conueniant.

Sed in figura albmcn

do, quoniam trianguli
alb centrum grauitatis

eſt in linea le: trapezijque; abmo centrum in linea ek: trape
zij omcd in kg: & trianguli cnd in ipſa gn: erit magnitu
dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
trum grauitatis in linea ln: & ob eandem cauſſam in linea
om.
eſt enim trianguli aod centrum in linea oh: trapezij
alnd in hk: trapezij lbcn in kf: & trianguli bmc in fm.

cum ergo figuræ albmcndo centrum grauitatis ſit in li­
nea ln, & in linea om; erit centrum ipſius punctum k, in

Text layer

  • Dictionary
  • Places

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index