Viviani, Vincenzo, De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei

Page concordance

< >
Scan Original
141 117
142 118
143 119
144 120
145 121
146 122
147 123
148 124
149 125
150 126
151 127
152 128
153 129
154 130
155 131
156 132
157 133
158 134
159 135
160 136
161 137
162 138
163 139
164 140
165 141
166 142
167 143
168 144
169 145
170 146
< >
page |< < (141) of 347 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div472" type="section" level="1" n="193">
          <pb o="141" file="0165" n="165" rhead=""/>
        </div>
        <div xml:id="echoid-div474" type="section" level="1" n="194">
          <head xml:id="echoid-head199" xml:space="preserve">THEOR. XLVI. PROP. XCII.</head>
          <p>
            <s xml:id="echoid-s4724" xml:space="preserve">Si Parabolen, vel Hyperbolen, aut Ellipſim circa maiorem
              <lb/>
            axim recta linea, præter ad verticem contingat, cui à tactu ducta
              <lb/>
            ſit perpendicularis axi occurrens; </s>
            <s xml:id="echoid-s4725" xml:space="preserve">circulus, cuius centrum ſit idem
              <lb/>
            occurſus, radius verò ſit ipſa perpẽdicularis erit ſectioni inſcriptus.</s>
            <s xml:id="echoid-s4726" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4727" xml:space="preserve">Si autem Ellipſis fuerit circa minorem axim, cui prædicta per-
              <lb/>
            pendicularis occurrat, circulus ex ea tanquam radio, at centro fa-
              <lb/>
            cto ipſo occurſu, erit eidem Ellipſi circumſcriptus.</s>
            <s xml:id="echoid-s4728" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4729" xml:space="preserve">ESto ABC, Parabole, vel Hyperbole, in prima figura, aut Ellipſis in ſe-
              <lb/>
            cunda, circa maiorem axim BO; </s>
            <s xml:id="echoid-s4730" xml:space="preserve">vel circa minorẽ, vt in tertia, quarum
              <lb/>
            vertex B, & </s>
            <s xml:id="echoid-s4731" xml:space="preserve">ad aliud punctum quædam contingens EF, cui ducta ſit perpen-
              <lb/>
            dicularis ED, quæ axi occurret in D, quo facto centro, & </s>
            <s xml:id="echoid-s4732" xml:space="preserve">interuallo
              <note symbol="a" position="right" xlink:label="note-0165-01" xlink:href="note-0165-01a" xml:space="preserve">88. h.</note>
            circulus EGHI deſcribatur. </s>
            <s xml:id="echoid-s4733" xml:space="preserve">Dico primùmhunc, in prima, & </s>
            <s xml:id="echoid-s4734" xml:space="preserve">ſecunda figu-
              <lb/>
            ra, datæ ſectioni eſſe inſcriptum.</s>
            <s xml:id="echoid-s4735" xml:space="preserve"/>
          </p>
          <figure number="130">
            <image file="0165-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0165-01"/>
          </figure>
          <p>
            <s xml:id="echoid-s4736" xml:space="preserve">Applicata enim EH, ſecans
              <unsure/>
            axim in L, & </s>
            <s xml:id="echoid-s4737" xml:space="preserve">iuncta DH. </s>
            <s xml:id="echoid-s4738" xml:space="preserve">Cum in triangulis
              <lb/>
            ELD, HLD anguli ad L ſint recti, & </s>
            <s xml:id="echoid-s4739" xml:space="preserve">latera EL, LD æqualia lateribus HL,
              <lb/>
            LD, erit baſis DE æqualis DH, exquo circulus ex DE tranſibit omnino per
              <lb/>
            H, ideoque coni-ſectio, & </s>
            <s xml:id="echoid-s4740" xml:space="preserve">circulus, ſunt binæ ſectiones ſimul adſcriptæ
              <lb/>
            (cum earum diametri, & </s>
            <s xml:id="echoid-s4741" xml:space="preserve">applicatæ ſimul congruant) quæ in ijſdem extre-
              <lb/>
            mis communis applicatæ EH ſimul conueniunt, atque ad eorum alterum E,
              <lb/>
            eadem recta EF vtranque ſectionem contingit, nempe ſectionem ABC, ex
              <lb/>
            ſuppoſitione, & </s>
            <s xml:id="echoid-s4742" xml:space="preserve">circulum EGHI, cum EF ſit ad extremum ſemi-diametri
              <lb/>
            ED perpendicularis, atque vertex circuli G cadit infra B verticem ſectionis,
              <lb/>
            cum ſit DB maior DE, ſiue maior DG, quare circulus ex DE erit
              <note symbol="b" position="right" xlink:label="note-0165-02" xlink:href="note-0165-02a" xml:space="preserve">ibideni.</note>
              <note symbol="c" position="right" xlink:label="note-0165-03" xlink:href="note-0165-03a" xml:space="preserve">@ 1. h.</note>
            inſcriptus. </s>
            <s xml:id="echoid-s4743" xml:space="preserve">Quod primò erat, &</s>
            <s xml:id="echoid-s4744" xml:space="preserve">c.</s>
            <s xml:id="echoid-s4745" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4746" xml:space="preserve">AMpliùs, dico in tertia figura, prædictum circulum EGHI eſſe datæ El-
              <lb/>
            lipſi ABCO circumſcriptum.</s>
            <s xml:id="echoid-s4747" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4748" xml:space="preserve">Nam facta eadem conſtructione, ac ſupra oſtendetur pariter </s>
          </p>
        </div>
      </text>
    </echo>