Baliani, Giovanni Battista, De motv natvrali gravivm solidorvm et liqvidorvm
page |< < of 177 > >|
    <archimedes>
      <text>
        <body>
          <chap type="bk">
            <pb xlink:href="064/01/169.jpg"/>
            <subchap1 n="11" type="proposition">
              <p type="head">
                <s id="s.001252">PROPOSITIO XI. PROBL. VII</s>
              </p>
              <subchap2 n="11" type="statement">
                <p type="main">
                  <s id="s.001253">Dato foramine, & linea orizontali intermi­
                    <lb/>
                  nata; constituere super illa foramen, a quo
                    <lb/>
                  aequalis aqua fluat.
                    <figure id="id.064.01.169.1.jpg" xlink:href="064/01/169/1.jpg" number="98"/>
                  </s>
                </p>
              </subchap2>
              <subchap2 n="11" type="proof">
                <p type="main">
                  <s id="s.001254">Dato foramine AB, & orizontali CD.</s>
                </p>
                <p type="main">
                  <s id="s.001255">Describendum sit foramen super CD, a
                    <lb/>
                  quo effluat aqua ut per AB.</s>
                </p>
                <p type="main">
                  <s id="s.001256">Erigantur perpendiculares AE, BC, & produca­
                    <lb/>
                  tur DC in E, & super EC fait foramen aequale
                    <lb/>
                  AB, & sit FC, & ducta FG parallela CD, fiat
                    <lb/>
                  HI media inter K summum vasis B, & KE,
                    <lb/>
                  & ut HI ad KE, ita DL ad EC.</s>
                </p>
                <p type="main">
                  <s id="s.001257">Dico per LG foramen fluere aquam ut per AB.</s>
                </p>
                <p type="main">
                  <s id="s.001258">Quoniam aqua LG ad aquam FC est ut HI ad
                    <lb/>
                  KE
                    <arrow.to.target n="marg262"/>
                  , & aqua AB ad aquam CF est ut HI ad
                    <lb/>
                  KE
                    <arrow.to.target n="marg263"/>
                  , erit ut aqua LG ad CF, ita aqua AB
                    <lb/>
                  ad CF
                    <arrow.to.target n="marg264"/>
                  , & proinde aqua AB aequalis aquae
                    <lb/>
                  LG
                    <arrow.to.target n="marg265"/>
                  . </s>
                  <s id="s.001259">Quod etc.</s>
                </p>
                <p type="margin">
                  <s id="s.001260">
                    <margin.target id="marg262"/>
                  Per 2. huius.</s>
                </p>
                <p type="margin">
                  <s id="s.001261">
                    <margin.target id="marg263"/>
                  Per 5. huius.</s>
                </p>
                <p type="margin">
                  <s id="s.001262">
                    <margin.target id="marg264"/>
                  Per 11. quinti.</s>
                </p>
                <p type="margin">
                  <s id="s.001263">
                    <margin.target id="marg265"/>
                  Per nonam quinti.</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>