Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 1: Opera mechanica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 434
>
181
182
(113)
183
(114)
184
185
186
187
(115)
188
(116)
189
(117)
190
(118)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 434
>
page
|<
<
(107)
of 434
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div191
"
type
="
section
"
level
="
1
"
n
="
69
">
<
pb
o
="
107
"
file
="
0159
"
n
="
173
"
rhead
="
HOROLOG. OSCILLATOR.
"/>
</
div
>
<
div
xml:id
="
echoid-div195
"
type
="
section
"
level
="
1
"
n
="
70
">
<
head
xml:id
="
echoid-head94
"
xml:space
="
preserve
">PROPOSITIO X.</
head
>
<
note
position
="
right
"
xml:space
="
preserve
">
<
emph
style
="
sc
">De linea-</
emph
>
<
lb
/>
<
emph
style
="
sc
">RUM CUR-</
emph
>
<
lb
/>
<
emph
style
="
sc
">VARUM</
emph
>
<
lb
/>
<
emph
style
="
sc
">EVOLUTIO-</
emph
>
<
lb
/>
<
emph
style
="
sc
">NE</
emph
>
.</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2401
"
xml:space
="
preserve
">LIneas curvas exhibere quarum evolutione elli-
<
lb
/>
pſes & </
s
>
<
s
xml:id
="
echoid-s2402
"
xml:space
="
preserve
">hyperbolæ deſcribantur, rectasque in-
<
lb
/>
venire iisdem curvis æquales.</
s
>
<
s
xml:id
="
echoid-s2403
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2404
"
xml:space
="
preserve
">Sit ellipſis vel hyperbole quælibet A B, cujus axis trans-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0159-02
"
xlink:href
="
note-0159-02a
"
xml:space
="
preserve
">TAB. XV.
<
lb
/>
Fig. 2. & 3.</
note
>
verſus A C; </
s
>
<
s
xml:id
="
echoid-s2405
"
xml:space
="
preserve
">centrum figuræ D; </
s
>
<
s
xml:id
="
echoid-s2406
"
xml:space
="
preserve
">latus rectum duplum ipſius
<
lb
/>
A E. </
s
>
<
s
xml:id
="
echoid-s2407
"
xml:space
="
preserve
">Et ſumpto in ſectione quovis puncto, ut B, applice-
<
lb
/>
tur ordinatim ad axem recta B K, & </
s
>
<
s
xml:id
="
echoid-s2408
"
xml:space
="
preserve
">ad dictum punctum B
<
lb
/>
tangens ducatur quæ conveniat cum axe in F; </
s
>
<
s
xml:id
="
echoid-s2409
"
xml:space
="
preserve
">ſitque B G
<
lb
/>
ipſi F B perpendicularis, axique occurrat in G; </
s
>
<
s
xml:id
="
echoid-s2410
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2411
"
xml:space
="
preserve
">produ-
<
lb
/>
catur B G usque ad H, ut B H ad H G habeat rationem
<
lb
/>
eam quæ componitur ex rationibus G F ad F K, & </
s
>
<
s
xml:id
="
echoid-s2412
"
xml:space
="
preserve
">A D
<
lb
/>
ad D E.</
s
>
<
s
xml:id
="
echoid-s2413
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2414
"
xml:space
="
preserve
">Dico curvam E H M, cujus puncta omnia inveniuntur
<
lb
/>
eodem modo quo punctum H, eſſe eam cujus evolu-
<
lb
/>
tione, unà cum recta E A, deſcribetur ſectio A B. </
s
>
<
s
xml:id
="
echoid-s2415
"
xml:space
="
preserve
">Ipſam
<
lb
/>
autem B H tangere curvam in H, & </
s
>
<
s
xml:id
="
echoid-s2416
"
xml:space
="
preserve
">eſſe toti H E A æqua-
<
lb
/>
lem. </
s
>
<
s
xml:id
="
echoid-s2417
"
xml:space
="
preserve
">Quamobrem, ſi ab H B auferatur E A, reliqua recta
<
lb
/>
portioni curvæ H E æquabitur. </
s
>
<
s
xml:id
="
echoid-s2418
"
xml:space
="
preserve
">Apparet autem, cum cur-
<
lb
/>
væ puncta quævis indifferenter, certaque ratione invenian-
<
lb
/>
tur, eſſe eam utrobique ex earum genere, quæ merè geo-
<
lb
/>
metricæ cenſentur. </
s
>
<
s
xml:id
="
echoid-s2419
"
xml:space
="
preserve
">Unde & </
s
>
<
s
xml:id
="
echoid-s2420
"
xml:space
="
preserve
">relatio horum omnium puncto-
<
lb
/>
rum ad puncta axis A C, æquatione aliqua exprimi poterit,
<
lb
/>
quam æquationem ad ſextam dimenſionem aſcendere invenio;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2421
"
xml:space
="
preserve
">minimumque habere terminorum, ſi fuerit A B hyperbola
<
lb
/>
cujus latera transverſum rectumque æqualia. </
s
>
<
s
xml:id
="
echoid-s2422
"
xml:space
="
preserve
">Tunc enim du-
<
lb
/>
cta ex quovis curvæ puncto, ut H, ad axem C A N per-
<
lb
/>
pendiculari H N; </
s
>
<
s
xml:id
="
echoid-s2423
"
xml:space
="
preserve
">vocatâque A C, a; </
s
>
<
s
xml:id
="
echoid-s2424
"
xml:space
="
preserve
">C N, x; </
s
>
<
s
xml:id
="
echoid-s2425
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2426
"
xml:space
="
preserve
">N H,
<
lb
/>
y; </
s
>
<
s
xml:id
="
echoid-s2427
"
xml:space
="
preserve
">erit ſemper cubus ab x x-y y-a a æqualis 27 x x y y a a. </
s
>
<
s
xml:id
="
echoid-s2428
"
xml:space
="
preserve
">
<
lb
/>
Sed hoc caſu brevius quoque multo, quam prædicta con-
<
lb
/>
ſtructione, curvæ E H M puncta reperiri poſſunt, ut in ſe-
<
lb
/>
quentibus oſtendetur.</
s
>
<
s
xml:id
="
echoid-s2429
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2430
"
xml:space
="
preserve
">Cæterum notandum eſt, in ellipſi ſingulos quadrantes ſin-
<
lb
/>
gularum linearum evolutione deſcribi; </
s
>
<
s
xml:id
="
echoid-s2431
"
xml:space
="
preserve
">ſicut quadrans A B </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>