Alvarus, Thomas
,
Liber de triplici motu
,
1509
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 290
>
Scan
Original
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 290
>
page
|<
<
of 290
>
>|
<
echo
version
="
1.0
">
<
text
xml:lang
="
la
">
<
div
xml:id
="
N10132
"
level
="
1
"
n
="
1
"
type
="
body
">
<
div
xml:id
="
N15C17
"
level
="
2
"
n
="
3
"
type
="
other
"
type-free
="
pars
">
<
div
xml:id
="
N20F21
"
level
="
3
"
n
="
3
"
type
="
other
"
type-free
="
tractatus
">
<
div
xml:id
="
N20F2E
"
level
="
4
"
n
="
1
"
type
="
chapter
"
type-free
="
capitulum
">
<
p
xml:id
="
N21681
">
<
s
xml:id
="
N216E8
"
xml:space
="
preserve
">
<
pb
chead
="
Tertii tractatus
"
file
="
0179
"
n
="
179
"/>
inuicem approximari: et tūc tale condenſaret̄̄: igi-
<
lb
/>
tur non eſſet ante illam approximationem puncto
<
lb
/>
rum infinite denſum. </
s
>
<
s
xml:id
="
N216F4
"
xml:space
="
preserve
">Conſequentia patet et mi-
<
lb
/>
nor ꝓbatur. </
s
>
<
s
xml:id
="
N216F9
"
xml:space
="
preserve
">q2 condenſari nihil aliud eſt ꝙ̄ puncta
<
lb
/>
approximari / vt patet ex deſcriptione cõdēſatiõis
<
lb
/>
</
s
>
<
s
xml:id
="
N216FF
"
xml:space
="
preserve
">¶ Dices et bñ cõcedēdo ſeq̄lã et negãdo falſitatē cõ
<
lb
/>
ſequētis: et ad ꝓbatiouē concedo / pūcta illiꝰ cor-
<
lb
/>
poris poſſūt ad inuicē aproximari: et nego tunc
<
lb
/>
condenſaretur tale corpus: et cū ꝓbat̄̄ / ſic per dif
<
lb
/>
finitionem condenſationis: dico / non ſic deſcribi
<
lb
/>
tur condēſatio. </
s
>
<
s
xml:id
="
N2170C
"
xml:space
="
preserve
">Sed de hoc videbit̄̄ poſtea. </
s
>
<
s
xml:id
="
N2170F
"
xml:space
="
preserve
">Si enim
<
lb
/>
alicuius pedalis prīa pars ꝓportionalis propor-
<
lb
/>
tione dupla aliq̇d cõtineat de materia: et ſecūda tm̄
<
lb
/>
de materia: et tertia tm̄: et ſic ↄ̨ñter. </
s
>
<
s
xml:id
="
N21718
"
xml:space
="
preserve
">Ita prima ſit
<
lb
/>
aliquãtulū denſa: ſecūda ī duplo dēſior: et tertia ī q̈
<
lb
/>
druplo: et ſic cõſequēter: tūc cõſtat tale corpꝰ ē īfi-
<
lb
/>
nite dēſū: et ſub pedali quantitate infinitam mate-
<
lb
/>
riam continet.</
s
>
</
p
>
<
p
xml:id
="
N2172D
">
<
s
xml:id
="
N2172E
"
xml:space
="
preserve
">Sꝫ ↄ̨̨tra / q2 ſi ſolutio eſſet a ſeq̄ret̄̄ /
<
lb
/>
poſſet dari finitū īfinite dēſū vniformiter: ſꝫ ↄ̨ñs eſt
<
lb
/>
falſū: igr̄ ſolutio nulla. </
s
>
<
s
xml:id
="
N21735
"
xml:space
="
preserve
">Seq̄la ꝓbat̄̄ / q2 tale corpus
<
lb
/>
de quo fit mētio in ſolntiõe eſt finitū īfinite dēſū dif
<
lb
/>
formiter / vt dictis: igr̄ illud corpꝰ finitū p̄t reduci ad
<
lb
/>
vniformitatē: q̊ facto tale corpꝰ finitū eſſet īfinite dē
<
lb
/>
ſū vniformiter: igit̄̄. </
s
>
<
s
xml:id
="
N21740
"
xml:space
="
preserve
">Sꝫ iã ꝓbat̄̄ falſitas ↄ̨ñtis: q2 ſi
<
lb
/>
aliq̇d eſt finitum infinite dēſū vniformiter ſeq̇tur /
<
lb
/>
prīa pars ꝓportionalis eſt ita denſa ſicut ſcḋa ade
<
lb
/>
quate: et ſecunda ſicut tertia et tertia ſicut quarta / et
<
lb
/>
ſic ↄ̨ñter: et vltra prīa pars ꝓportiõalis eius eſt ita
<
lb
/>
dēſa ſicut ſcḋa adequate etc. / igit̄̄ ſecūda ī duplo mi
<
lb
/>
nus continet de materia ꝙ̄ tertia: et ſic ↄ̨ñter: g̊ reſi
<
lb
/>
duū ex oībus dēpta prīa habet tm̄ de materia ſicut
<
lb
/>
prima: ſꝫ materia prime eſt finita: igit̄̄ materia to-
<
lb
/>
tius corporis ē finita: et quãtitas ſimiliter finita: igr̄
<
lb
/>
totū corpꝰ ē finite denſū. </
s
>
<
s
xml:id
="
N21757
"
xml:space
="
preserve
">et ſic nõ eſt vniformiter īfini
<
lb
/>
te dēſū / qḋ fuit ꝓbandū. </
s
>
<
s
xml:id
="
N2175C
"
xml:space
="
preserve
">Et ſi dicas / ſecūda ꝑs pro
<
lb
/>
portionalis continet tãtã materiã ſicut prīa et q̄lib3
<
lb
/>
ſequens ſimiliter quia īfinitã: iã ſeq̇t̄̄ / ad quodlib3
<
lb
/>
pūctū talis corporis ē materia īfinita: et ē penetra
<
lb
/>
tio dimenſionū vel materia ṗme ꝑtis ꝓportiona
<
lb
/>
lis ē reducta ad nõ quãtū: et ſiĺr materia ſcḋe. </
s
>
<
s
xml:id
="
N21769
"
xml:space
="
preserve
">et ter-
<
lb
/>
tie / et ſic ↄ̨ñter: et ꝑ ↄ̨ñs totū illud corpꝰ erit reductum
<
lb
/>
ad nõ quãtū et ſic nõ erit finitū īfinite dēſū vniformi
<
lb
/>
ter / qḋ fuerat demonſtrãdū. </
s
>
<
s
xml:id
="
N21772
"
xml:space
="
preserve
">¶ Cõfirmat̄̄ ſcḋo </
s
>
<
s
xml:id
="
N21775
"
xml:space
="
preserve
">Q2 ſi ra
<
lb
/>
ritas eēt poſſibilis: ēt poſſibilis eēt raritas īfinita
<
lb
/>
ī ſubiecto finito: ſꝫ ↄ̨ñs eſt falſū. </
s
>
<
s
xml:id
="
N2177C
"
xml:space
="
preserve
">igr̄ illud ex quo ſeq̇
<
lb
/>
tur. </
s
>
<
s
xml:id
="
N21781
"
xml:space
="
preserve
">Seq̄la apparet et falſitas ↄ̨ñtis deducir̄: q2 vel
<
lb
/>
tale ſubiectū finitū cõtinet infinitã materiã vel fini-
<
lb
/>
tã ſi infinitã iã illud nõ ē rarū: et ꝑ ↄ̨ñs nõ ē īfinite ra
<
lb
/>
rū. </
s
>
<
s
xml:id
="
N2178A
"
xml:space
="
preserve
">Si finitã vel igr̄ cõtinet tãtã quantã vnū aliḋ ſub
<
lb
/>
ieetū eq̈le illi finite rarū vel maiorē vel minorē. </
s
>
<
s
xml:id
="
N2178F
"
xml:space
="
preserve
">Si
<
lb
/>
tantã ſeq̇t̄̄ / illa ſubiecta ſūt eq̄ rara: et vnū ē finite
<
lb
/>
raꝝ. </
s
>
<
s
xml:id
="
N21796
"
xml:space
="
preserve
">ir̄ et aliud. </
s
>
<
s
xml:id
="
N21799
"
xml:space
="
preserve
">Si maiorē iã ſeq̇t̄̄ / hoc nõ eſt ita ra
<
lb
/>
rū. </
s
>
<
s
xml:id
="
N2179E
"
xml:space
="
preserve
">Si minorē cū nõ ſit poſſibile aliq̈ materia ſit ī
<
lb
/>
finite modica ſeq̇t̄̄ / ī aliq̈ ꝓportiõe materiã mino-
<
lb
/>
rē cõtinebit et ſic in eadē ꝓportiõe erit magꝪ rarū et
<
lb
/>
ꝑ ↄ̨ñs nõ erit īfinite rarū / quod fuit ꝓbandum.</
s
>
</
p
>
<
p
xml:id
="
N217A7
">
<
s
xml:id
="
N217A8
"
xml:space
="
preserve
">Septīo prīcipaliṫ argr̄ ſic īq̇rēdo ma
<
lb
/>
teriam de raritate et dēſitate difformi. </
s
>
<
s
xml:id
="
N217AD
"
xml:space
="
preserve
">q2 ſi raritas
<
lb
/>
et dēſitas eſſent poſſibiles ſeq̄ret̄̄ / pedale cuius pri
<
lb
/>
ma ꝑs ꝓportionalis ꝓportione dupla eſſet aliquã
<
lb
/>
tulū rara et ſecunda in duplo rarior ꝙ̄ prīa: et tertia
<
lb
/>
ī duplo rarior ꝙ̄ ſcḋa et q̈rta in duplo rarior ꝙ̄ ter
<
lb
/>
tia: et ſic ↄ̨ñter eſſet infinite rarū: ſed ↄ̨ñs eſt flm̄: igit̄̄
<
lb
/>
illud ex q̊ ſeq̇tur </
s
>
<
s
xml:id
="
N217BC
"
xml:space
="
preserve
">Seq̄lã ꝓbat̄̄ / q2 raritas prīe ꝑtis ꝓ
<
lb
/>
portiõalis illiꝰ corꝑis denoīat totale corpꝰ aliquã
<
lb
/>
tū rarū et raritas ſcḋe ꝑtis ꝓportionalis tm̄ deno-
<
lb
/>
minat et raritas tertie ꝑtis: ſiĺr / et ſic ↄ̨ñter: igit̄̄ ibi
<
cb
chead
="
Capitulum tertium
"/>
ſūt īfinite denoīatiões eq̈les nõ cõicãtes illud corpꝰ
<
lb
/>
denoīantes: igit̄̄ illud corpꝰ ē īfinite raꝝ. </
s
>
<
s
xml:id
="
N217CA
"
xml:space
="
preserve
">Añs pꝫ / q2
<
lb
/>
raritas ſcḋe ꝑtis eſt in ſubduplo ſubiecto: et ī duplo
<
lb
/>
maior ꝙ̄ prime ꝑtis raritas: igr̄ tm̄ denoīat totale
<
lb
/>
corpꝰ ſicut raritas prīe partis et eadē rõne raritas
<
lb
/>
tertie tm̄ ſicut raritas ſcḋe / et ſic ↄ̨ñter: igt̄̄ intētū </
s
>
<
s
xml:id
="
N217D5
"
xml:space
="
preserve
">Sꝫ
<
lb
/>
falſitas ↄ̨ñtis ꝓbat̄̄: q2 illud corpꝰ pedale ſub finita
<
lb
/>
quãtitate cõtinet aliquãtã materiã: igr̄ nõ ē īfinite
<
lb
/>
rarū. </
s
>
<
s
xml:id
="
N217DE
"
xml:space
="
preserve
">itē illud pedale ē aliq̈liṫ denſū: igr̄ nõ ē īfinite
<
lb
/>
raꝝ. </
s
>
<
s
xml:id
="
N217E3
"
xml:space
="
preserve
">Coña pꝫ et arguit̄̄ añs / q2 prīa ꝑs ꝓportiõalis
<
lb
/>
illiꝰ pedalis eſt aliq̈liṫ denſa: et ſcḋa in duplo minꝰ
<
lb
/>
et tertia ī duplo minꝰ ꝙ̄ ſcḋa: et ſic ↄ̨ñter: igr̄ prima
<
lb
/>
ꝑs ꝓportionalis cõtinet aliquãtã materiã et ſcḋa in
<
lb
/>
q̈druplo minorē: et tertia in q̈druplo minorē ꝙ̄ ſcḋa /
<
lb
/>
et ſic ↄ̨ñter: igit̄̄ aggregatū ex illis oībꝰ materiebꝰ
<
lb
/>
dēpta mã prīe ꝑtis eſt ſubtriplū ad materiaꝫ prīe
<
lb
/>
ꝑtis ſed materia prime ꝑtis eſt vt tria (vt ſuppono) /
<
lb
/>
igit̄̄ tota materia illiꝰ corꝑis pedalis eſt vt q̈tuor: et
<
lb
/>
ꝑ ↄ̨ñs illud corpus eſt ita dēſū adeq̈te ſicut vnū aliḋ
<
lb
/>
pedale vniformite qḋ hꝫ q̈tuor gradꝰ materie / qḋ fuit
<
lb
/>
ꝓbãdū.
<
note
position
="
right
"
xlink:href
="
note-0179-01a
"
xlink:label
="
note-0179-01
"
xml:id
="
N218C4
"
xml:space
="
preserve
">.1. confir.</
note
>
</
s
>
<
s
xml:id
="
N21801
"
xml:space
="
preserve
">Et ↄ̨firmat̄̄ </
s
>
<
s
xml:id
="
N21804
"
xml:space
="
preserve
">Et capio vnū corpꝰ cuiꝰ prīa ꝑs
<
lb
/>
ꝓportiõalis ꝓportiõe dupla ſit aliquãtulum rara
<
lb
/>
vniformitet puta vt duo: et ſecūda in duplo minus
<
lb
/>
et tertia in duplo minus ꝙ̄ ſcḋa / et ſic ↄ̨ñter ſequitur /
<
lb
/>
illud corpus eſſet rarum et nõ eſſet rarum: ſed cõ-
<
lb
/>
ſequens implicat: igit̄̄ et q̄ſtio </
s
>
<
s
xml:id
="
N21811
"
xml:space
="
preserve
">Sequela ꝓbatur / q2
<
lb
/>
illud eſt rarū vt vnū cuꝫ vna tertia: igr̄ illud eſt raꝝ
<
lb
/>
</
s
>
<
s
xml:id
="
N21817
"
xml:space
="
preserve
">Añs ꝓbatur / q2 ſi eſſet vnum corpus cuius prīa pro
<
lb
/>
portionalis ꝓportione dupla eēt intenſa vt duo: et
<
lb
/>
ſecunda in duplo minus. </
s
>
<
s
xml:id
="
N2181E
"
xml:space
="
preserve
">et tertia in duplo minus ̄
<
lb
/>
ſecunda / et ſic couſequenter. </
s
>
<
s
xml:id
="
N21823
"
xml:space
="
preserve
">totū eēt intenſū vt vnuꝫ
<
lb
/>
cū vna tertia / vt ꝓbabitur infra. de intenſione: igit̄̄
<
lb
/>
pari ratione illud corpꝰ cuiꝰ vna ꝑs ꝓportionalis
<
lb
/>
ꝓportione dupla eſt rara vt duo: et ſcḋa in duplo
<
lb
/>
minus et tertia in duplo minus ꝙ̄ ſcḋa / et ſic cõſequē
<
lb
/>
ter eſt rarū vt vnū cū vna tertia / quod fuit ꝓbanduꝫ
<
lb
/>
</
s
>
<
s
xml:id
="
N21831
"
xml:space
="
preserve
">Sed nõ ſit rarū ꝓbat̄̄ / q2 eſt infinite denſū: g̊ nõ eſt
<
lb
/>
rarum antecedens ꝓbatur / q2 ſub finita quantitate
<
lb
/>
infinitam materiam continet / quod probatur / q2 q̄-
<
lb
/>
libet pars proportionalis continet tantum de ma
<
lb
/>
teria ſicut prima: ergo tota materia illius totiꝰ eſt
<
lb
/>
infinita añs ꝓbatur / q2 cū ſecunda pars ꝓportiõa-
<
lb
/>
lis eſt in duplo minus rara ꝙ̄ prīa ipſa eſt in duplo
<
lb
/>
denſior ꝙ̄ prīa et eſt in duplo minor: g̊ tm̄ cõtinet de
<
lb
/>
materia adeq̈te quãtã cõtinet prīa. </
s
>
<
s
xml:id
="
N21844
"
xml:space
="
preserve
">Coña ptꝫ / q2 ſi ſe
<
lb
/>
cūda eēt eq̄ dēſa cū prīa in duplo minorē materiaꝫ
<
lb
/>
cõtiueret ꝙ̄ prīa / vt patet: ergo cū modo ſit ī duplo
<
lb
/>
denſior ꝙ̄ tunc eſſet mõ ſub eadē quãtitate in duplo
<
lb
/>
maiorē materiã cõtinet ꝙ̄ tunc contineret. </
s
>
<
s
xml:id
="
N2184F
"
xml:space
="
preserve
">Et eodē°
<
lb
/>
ꝓbabis / tertia tãtã materiã cõtinet ſicut ſecūda et
<
lb
/>
q̈rta ſicut tertia et ſic ī iufinitū: et ſic pꝫ / iliud conti
<
lb
/>
net infinitã materiã ſub finita quãtitate / qḋ fuit pro
<
lb
/>
bãdū.
<
note
position
="
right
"
xlink:href
="
note-0179-02a
"
xlink:label
="
note-0179-02
"
xml:id
="
N218CA
"
xml:space
="
preserve
">2. confir.</
note
>
</
s
>
<
s
xml:id
="
N2185F
"
xml:space
="
preserve
">¶ Cõfirmaṫ ſcḋo </
s
>
<
s
xml:id
="
N21862
"
xml:space
="
preserve
">Et capio vnū pedale cuiꝰ pri
<
lb
/>
ma ꝑs ꝓportiõalis ꝓportione decupla ſit dēſa ali
<
lb
/>
qualiter et ſcḋa ī duplo magis: et tertia ī duplo ma
<
lb
/>
gis ꝙ̄ ſcḋa et quarta in duplo magis ꝙ̄ tertia: et ſic
<
lb
/>
couſequenter: et ſic arguo ſequeretur ex queſtiõe
<
lb
/>
illud corpus eſſet infinite denſum: ſed conſequēs eſt
<
lb
/>
falſum: igitur illud ex quo ſequitur. </
s
>
<
s
xml:id
="
N21871
"
xml:space
="
preserve
">Sequela pro-
<
lb
/>
batur / quia ſi alicuius corporis diuiſi per partes ꝓ-
<
lb
/>
portionales propoſitione dupla prima pars ꝓpor
<
lb
/>
tionalis ſit aliquantulum denſa: et ſecunda in du-
<
lb
/>
plo denſior: et tertia in duplo denſior ꝙ̄ ſecun-
<
lb
/>
da: et quarta in duplo denſior ꝙ̄ tertia: et ſic conſe-
<
lb
/>
quenter: totum illud corpus eſt infinite denſum cuꝫ
<
lb
/>
contineat ſub finita quantitate infinitam materi-
<
lb
/>
am / vt probatum eſt in confirmatione ſuperiori:
<
lb
/>
igitur pari ratione etiam corpus diuiſum per par
<
lb
/>
tes ꝓportionales ꝓportione decupla cuius prima </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>