Alvarus, Thomas
,
Liber de triplici motu
,
1509
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 42
[out of range]
>
<
1 - 30
31 - 42
[out of range]
>
page
|<
<
of 290
>
>|
<
echo
version
="
1.0
">
<
text
xml:lang
="
la
">
<
div
xml:id
="
N10132
"
level
="
1
"
n
="
1
"
type
="
body
">
<
div
xml:id
="
N15C17
"
level
="
2
"
n
="
3
"
type
="
other
"
type-free
="
pars
">
<
div
xml:id
="
N20F21
"
level
="
3
"
n
="
3
"
type
="
other
"
type-free
="
tractatus
">
<
div
xml:id
="
N20F2E
"
level
="
4
"
n
="
1
"
type
="
chapter
"
type-free
="
capitulum
">
<
p
xml:id
="
N21681
">
<
s
xml:id
="
N216E8
"
xml:space
="
preserve
">
<
pb
chead
="
Tertii tractatus
"
file
="
0179
"
n
="
179
"/>
inuicem approximari: et tūc tale condenſaret̄̄: igi-
<
lb
/>
tur non eſſet ante illam approximationem puncto
<
lb
/>
rum infinite denſum. </
s
>
<
s
xml:id
="
N216F4
"
xml:space
="
preserve
">Conſequentia patet et mi-
<
lb
/>
nor ꝓbatur. </
s
>
<
s
xml:id
="
N216F9
"
xml:space
="
preserve
">q2 condenſari nihil aliud eſt ꝙ̄ puncta
<
lb
/>
approximari / vt patet ex deſcriptione cõdēſatiõis
<
lb
/>
</
s
>
<
s
xml:id
="
N216FF
"
xml:space
="
preserve
">¶ Dices et bñ cõcedēdo ſeq̄lã et negãdo falſitatē cõ
<
lb
/>
ſequētis: et ad ꝓbatiouē concedo / pūcta illiꝰ cor-
<
lb
/>
poris poſſūt ad inuicē aproximari: et nego tunc
<
lb
/>
condenſaretur tale corpus: et cū ꝓbat̄̄ / ſic per dif
<
lb
/>
finitionem condenſationis: dico / non ſic deſcribi
<
lb
/>
tur condēſatio. </
s
>
<
s
xml:id
="
N2170C
"
xml:space
="
preserve
">Sed de hoc videbit̄̄ poſtea. </
s
>
<
s
xml:id
="
N2170F
"
xml:space
="
preserve
">Si enim
<
lb
/>
alicuius pedalis prīa pars ꝓportionalis propor-
<
lb
/>
tione dupla aliq̇d cõtineat de materia: et ſecūda tm̄
<
lb
/>
de materia: et tertia tm̄: et ſic ↄ̨ñter. </
s
>
<
s
xml:id
="
N21718
"
xml:space
="
preserve
">Ita prima ſit
<
lb
/>
aliquãtulū denſa: ſecūda ī duplo dēſior: et tertia ī q̈
<
lb
/>
druplo: et ſic cõſequēter: tūc cõſtat tale corpꝰ ē īfi-
<
lb
/>
nite dēſū: et ſub pedali quantitate infinitam mate-
<
lb
/>
riam continet.</
s
>
</
p
>
<
p
xml:id
="
N2172D
">
<
s
xml:id
="
N2172E
"
xml:space
="
preserve
">Sꝫ ↄ̨̨tra / q2 ſi ſolutio eſſet a ſeq̄ret̄̄ /
<
lb
/>
poſſet dari finitū īfinite dēſū vniformiter: ſꝫ ↄ̨ñs eſt
<
lb
/>
falſū: igr̄ ſolutio nulla. </
s
>
<
s
xml:id
="
N21735
"
xml:space
="
preserve
">Seq̄la ꝓbat̄̄ / q2 tale corpus
<
lb
/>
de quo fit mētio in ſolntiõe eſt finitū īfinite dēſū dif
<
lb
/>
formiter / vt dictis: igr̄ illud corpꝰ finitū p̄t reduci ad
<
lb
/>
vniformitatē: q̊ facto tale corpꝰ finitū eſſet īfinite dē
<
lb
/>
ſū vniformiter: igit̄̄. </
s
>
<
s
xml:id
="
N21740
"
xml:space
="
preserve
">Sꝫ iã ꝓbat̄̄ falſitas ↄ̨ñtis: q2 ſi
<
lb
/>
aliq̇d eſt finitum infinite dēſū vniformiter ſeq̇tur /
<
lb
/>
prīa pars ꝓportionalis eſt ita denſa ſicut ſcḋa ade
<
lb
/>
quate: et ſecunda ſicut tertia et tertia ſicut quarta / et
<
lb
/>
ſic ↄ̨ñter: et vltra prīa pars ꝓportiõalis eius eſt ita
<
lb
/>
dēſa ſicut ſcḋa adequate etc. / igit̄̄ ſecūda ī duplo mi
<
lb
/>
nus continet de materia ꝙ̄ tertia: et ſic ↄ̨ñter: g̊ reſi
<
lb
/>
duū ex oībus dēpta prīa habet tm̄ de materia ſicut
<
lb
/>
prima: ſꝫ materia prime eſt finita: igit̄̄ materia to-
<
lb
/>
tius corporis ē finita: et quãtitas ſimiliter finita: igr̄
<
lb
/>
totū corpꝰ ē finite denſū. </
s
>
<
s
xml:id
="
N21757
"
xml:space
="
preserve
">et ſic nõ eſt vniformiter īfini
<
lb
/>
te dēſū / qḋ fuit ꝓbandū. </
s
>
<
s
xml:id
="
N2175C
"
xml:space
="
preserve
">Et ſi dicas / ſecūda ꝑs pro
<
lb
/>
portionalis continet tãtã materiã ſicut prīa et q̄lib3
<
lb
/>
ſequens ſimiliter quia īfinitã: iã ſeq̇t̄̄ / ad quodlib3
<
lb
/>
pūctū talis corporis ē materia īfinita: et ē penetra
<
lb
/>
tio dimenſionū vel materia ṗme ꝑtis ꝓportiona
<
lb
/>
lis ē reducta ad nõ quãtū: et ſiĺr materia ſcḋe. </
s
>
<
s
xml:id
="
N21769
"
xml:space
="
preserve
">et ter-
<
lb
/>
tie / et ſic ↄ̨ñter: et ꝑ ↄ̨ñs totū illud corpꝰ erit reductum
<
lb
/>
ad nõ quãtū et ſic nõ erit finitū īfinite dēſū vniformi
<
lb
/>
ter / qḋ fuerat demonſtrãdū. </
s
>
<
s
xml:id
="
N21772
"
xml:space
="
preserve
">¶ Cõfirmat̄̄ ſcḋo </
s
>
<
s
xml:id
="
N21775
"
xml:space
="
preserve
">Q2 ſi ra
<
lb
/>
ritas eēt poſſibilis: ēt poſſibilis eēt raritas īfinita
<
lb
/>
ī ſubiecto finito: ſꝫ ↄ̨ñs eſt falſū. </
s
>
<
s
xml:id
="
N2177C
"
xml:space
="
preserve
">igr̄ illud ex quo ſeq̇
<
lb
/>
tur. </
s
>
<
s
xml:id
="
N21781
"
xml:space
="
preserve
">Seq̄la apparet et falſitas ↄ̨ñtis deducir̄: q2 vel
<
lb
/>
tale ſubiectū finitū cõtinet infinitã materiã vel fini-
<
lb
/>
tã ſi infinitã iã illud nõ ē rarū: et ꝑ ↄ̨ñs nõ ē īfinite ra
<
lb
/>
rū. </
s
>
<
s
xml:id
="
N2178A
"
xml:space
="
preserve
">Si finitã vel igr̄ cõtinet tãtã quantã vnū aliḋ ſub
<
lb
/>
ieetū eq̈le illi finite rarū vel maiorē vel minorē. </
s
>
<
s
xml:id
="
N2178F
"
xml:space
="
preserve
">Si
<
lb
/>
tantã ſeq̇t̄̄ / illa ſubiecta ſūt eq̄ rara: et vnū ē finite
<
lb
/>
raꝝ. </
s
>
<
s
xml:id
="
N21796
"
xml:space
="
preserve
">ir̄ et aliud. </
s
>
<
s
xml:id
="
N21799
"
xml:space
="
preserve
">Si maiorē iã ſeq̇t̄̄ / hoc nõ eſt ita ra
<
lb
/>
rū. </
s
>
<
s
xml:id
="
N2179E
"
xml:space
="
preserve
">Si minorē cū nõ ſit poſſibile aliq̈ materia ſit ī
<
lb
/>
finite modica ſeq̇t̄̄ / ī aliq̈ ꝓportiõe materiã mino-
<
lb
/>
rē cõtinebit et ſic in eadē ꝓportiõe erit magꝪ rarū et
<
lb
/>
ꝑ ↄ̨ñs nõ erit īfinite rarū / quod fuit ꝓbandum.</
s
>
</
p
>
<
p
xml:id
="
N217A7
">
<
s
xml:id
="
N217A8
"
xml:space
="
preserve
">Septīo prīcipaliṫ argr̄ ſic īq̇rēdo ma
<
lb
/>
teriam de raritate et dēſitate difformi. </
s
>
<
s
xml:id
="
N217AD
"
xml:space
="
preserve
">q2 ſi raritas
<
lb
/>
et dēſitas eſſent poſſibiles ſeq̄ret̄̄ / pedale cuius pri
<
lb
/>
ma ꝑs ꝓportionalis ꝓportione dupla eſſet aliquã
<
lb
/>
tulū rara et ſecunda in duplo rarior ꝙ̄ prīa: et tertia
<
lb
/>
ī duplo rarior ꝙ̄ ſcḋa et q̈rta in duplo rarior ꝙ̄ ter
<
lb
/>
tia: et ſic ↄ̨ñter eſſet infinite rarū: ſed ↄ̨ñs eſt flm̄: igit̄̄
<
lb
/>
illud ex q̊ ſeq̇tur </
s
>
<
s
xml:id
="
N217BC
"
xml:space
="
preserve
">Seq̄lã ꝓbat̄̄ / q2 raritas prīe ꝑtis ꝓ
<
lb
/>
portiõalis illiꝰ corꝑis denoīat totale corpꝰ aliquã
<
lb
/>
tū rarū et raritas ſcḋe ꝑtis ꝓportionalis tm̄ deno-
<
lb
/>
minat et raritas tertie ꝑtis: ſiĺr / et ſic ↄ̨ñter: igit̄̄ ibi
<
cb
chead
="
Capitulum tertium
"/>
ſūt īfinite denoīatiões eq̈les nõ cõicãtes illud corpꝰ
<
lb
/>
denoīantes: igit̄̄ illud corpꝰ ē īfinite raꝝ. </
s
>
<
s
xml:id
="
N217CA
"
xml:space
="
preserve
">Añs pꝫ / q2
<
lb
/>
raritas ſcḋe ꝑtis eſt in ſubduplo ſubiecto: et ī duplo
<
lb
/>
maior ꝙ̄ prime ꝑtis raritas: igr̄ tm̄ denoīat totale
<
lb
/>
corpꝰ ſicut raritas prīe partis et eadē rõne raritas
<
lb
/>
tertie tm̄ ſicut raritas ſcḋe / et ſic ↄ̨ñter: igt̄̄ intētū </
s
>
<
s
xml:id
="
N217D5
"
xml:space
="
preserve
">Sꝫ
<
lb
/>
falſitas ↄ̨ñtis ꝓbat̄̄: q2 illud corpꝰ pedale ſub finita
<
lb
/>
quãtitate cõtinet aliquãtã materiã: igr̄ nõ ē īfinite
<
lb
/>
rarū. </
s
>
<
s
xml:id
="
N217DE
"
xml:space
="
preserve
">itē illud pedale ē aliq̈liṫ denſū: igr̄ nõ ē īfinite
<
lb
/>
raꝝ. </
s
>
<
s
xml:id
="
N217E3
"
xml:space
="
preserve
">Coña pꝫ et arguit̄̄ añs / q2 prīa ꝑs ꝓportiõalis
<
lb
/>
illiꝰ pedalis eſt aliq̈liṫ denſa: et ſcḋa in duplo minꝰ
<
lb
/>
et tertia ī duplo minꝰ ꝙ̄ ſcḋa: et ſic ↄ̨ñter: igr̄ prima
<
lb
/>
ꝑs ꝓportionalis cõtinet aliquãtã materiã et ſcḋa in
<
lb
/>
q̈druplo minorē: et tertia in q̈druplo minorē ꝙ̄ ſcḋa /
<
lb
/>
et ſic ↄ̨ñter: igit̄̄ aggregatū ex illis oībꝰ materiebꝰ
<
lb
/>
dēpta mã prīe ꝑtis eſt ſubtriplū ad materiaꝫ prīe
<
lb
/>
ꝑtis ſed materia prime ꝑtis eſt vt tria (vt ſuppono) /
<
lb
/>
igit̄̄ tota materia illiꝰ corꝑis pedalis eſt vt q̈tuor: et
<
lb
/>
ꝑ ↄ̨ñs illud corpus eſt ita dēſū adeq̈te ſicut vnū aliḋ
<
lb
/>
pedale vniformite qḋ hꝫ q̈tuor gradꝰ materie / qḋ fuit
<
lb
/>
ꝓbãdū.
<
note
position
="
right
"
xlink:href
="
note-0179-01a
"
xlink:label
="
note-0179-01
"
xml:id
="
N218C4
"
xml:space
="
preserve
">.1. confir.</
note
>
</
s
>
<
s
xml:id
="
N21801
"
xml:space
="
preserve
">Et ↄ̨firmat̄̄ </
s
>
<
s
xml:id
="
N21804
"
xml:space
="
preserve
">Et capio vnū corpꝰ cuiꝰ prīa ꝑs
<
lb
/>
ꝓportiõalis ꝓportiõe dupla ſit aliquãtulum rara
<
lb
/>
vniformitet puta vt duo: et ſecūda in duplo minus
<
lb
/>
et tertia in duplo minus ꝙ̄ ſcḋa / et ſic ↄ̨ñter ſequitur /
<
lb
/>
illud corpus eſſet rarum et nõ eſſet rarum: ſed cõ-
<
lb
/>
ſequens implicat: igit̄̄ et q̄ſtio </
s
>
<
s
xml:id
="
N21811
"
xml:space
="
preserve
">Sequela ꝓbatur / q2
<
lb
/>
illud eſt rarū vt vnū cuꝫ vna tertia: igr̄ illud eſt raꝝ
<
lb
/>
</
s
>
<
s
xml:id
="
N21817
"
xml:space
="
preserve
">Añs ꝓbatur / q2 ſi eſſet vnum corpus cuius prīa pro
<
lb
/>
portionalis ꝓportione dupla eēt intenſa vt duo: et
<
lb
/>
ſecunda in duplo minus. </
s
>
<
s
xml:id
="
N2181E
"
xml:space
="
preserve
">et tertia in duplo minus ̄
<
lb
/>
ſecunda / et ſic couſequenter. </
s
>
<
s
xml:id
="
N21823
"
xml:space
="
preserve
">totū eēt intenſū vt vnuꝫ
<
lb
/>
cū vna tertia / vt ꝓbabitur infra. de intenſione: igit̄̄
<
lb
/>
pari ratione illud corpꝰ cuiꝰ vna ꝑs ꝓportionalis
<
lb
/>
ꝓportione dupla eſt rara vt duo: et ſcḋa in duplo
<
lb
/>
minus et tertia in duplo minus ꝙ̄ ſcḋa / et ſic cõſequē
<
lb
/>
ter eſt rarū vt vnū cū vna tertia / quod fuit ꝓbanduꝫ
<
lb
/>
</
s
>
<
s
xml:id
="
N21831
"
xml:space
="
preserve
">Sed nõ ſit rarū ꝓbat̄̄ / q2 eſt infinite denſū: g̊ nõ eſt
<
lb
/>
rarum antecedens ꝓbatur / q2 ſub finita quantitate
<
lb
/>
infinitam materiam continet / quod probatur / q2 q̄-
<
lb
/>
libet pars proportionalis continet tantum de ma
<
lb
/>
teria ſicut prima: ergo tota materia illius totiꝰ eſt
<
lb
/>
infinita añs ꝓbatur / q2 cū ſecunda pars ꝓportiõa-
<
lb
/>
lis eſt in duplo minus rara ꝙ̄ prīa ipſa eſt in duplo
<
lb
/>
denſior ꝙ̄ prīa et eſt in duplo minor: g̊ tm̄ cõtinet de
<
lb
/>
materia adeq̈te quãtã cõtinet prīa. </
s
>
<
s
xml:id
="
N21844
"
xml:space
="
preserve
">Coña ptꝫ / q2 ſi ſe
<
lb
/>
cūda eēt eq̄ dēſa cū prīa in duplo minorē materiaꝫ
<
lb
/>
cõtiueret ꝙ̄ prīa / vt patet: ergo cū modo ſit ī duplo
<
lb
/>
denſior ꝙ̄ tunc eſſet mõ ſub eadē quãtitate in duplo
<
lb
/>
maiorē materiã cõtinet ꝙ̄ tunc contineret. </
s
>
<
s
xml:id
="
N2184F
"
xml:space
="
preserve
">Et eodē°
<
lb
/>
ꝓbabis / tertia tãtã materiã cõtinet ſicut ſecūda et
<
lb
/>
q̈rta ſicut tertia et ſic ī iufinitū: et ſic pꝫ / iliud conti
<
lb
/>
net infinitã materiã ſub finita quãtitate / qḋ fuit pro
<
lb
/>
bãdū.
<
note
position
="
right
"
xlink:href
="
note-0179-02a
"
xlink:label
="
note-0179-02
"
xml:id
="
N218CA
"
xml:space
="
preserve
">2. confir.</
note
>
</
s
>
<
s
xml:id
="
N2185F
"
xml:space
="
preserve
">¶ Cõfirmaṫ ſcḋo </
s
>
<
s
xml:id
="
N21862
"
xml:space
="
preserve
">Et capio vnū pedale cuiꝰ pri
<
lb
/>
ma ꝑs ꝓportiõalis ꝓportione decupla ſit dēſa ali
<
lb
/>
qualiter et ſcḋa ī duplo magis: et tertia ī duplo ma
<
lb
/>
gis ꝙ̄ ſcḋa et quarta in duplo magis ꝙ̄ tertia: et ſic
<
lb
/>
couſequenter: et ſic arguo ſequeretur ex queſtiõe
<
lb
/>
illud corpus eſſet infinite denſum: ſed conſequēs eſt
<
lb
/>
falſum: igitur illud ex quo ſequitur. </
s
>
<
s
xml:id
="
N21871
"
xml:space
="
preserve
">Sequela pro-
<
lb
/>
batur / quia ſi alicuius corporis diuiſi per partes ꝓ-
<
lb
/>
portionales propoſitione dupla prima pars ꝓpor
<
lb
/>
tionalis ſit aliquantulum denſa: et ſecunda in du-
<
lb
/>
plo denſior: et tertia in duplo denſior ꝙ̄ ſecun-
<
lb
/>
da: et quarta in duplo denſior ꝙ̄ tertia: et ſic conſe-
<
lb
/>
quenter: totum illud corpus eſt infinite denſum cuꝫ
<
lb
/>
contineat ſub finita quantitate infinitam materi-
<
lb
/>
am / vt probatum eſt in confirmatione ſuperiori:
<
lb
/>
igitur pari ratione etiam corpus diuiſum per par
<
lb
/>
tes ꝓportionales ꝓportione decupla cuius prima </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>