Ibn-al-Haitam, al-Hasan Ibn-al-Hasan; Witelo; Risner, Friedrich, Opticae thesavrvs Alhazeni Arabis libri septem, nunc primùm editi. Eivsdem liber De Crepvscvlis & Nubium ascensionibus. Item Vitellonis Thuvringopoloni Libri X. Omnes instaurati, figuris illustrati & aucti, adiectis etiam in Alhazenum commentarijs, a Federico Risnero, 1572

Page concordance

< >
Scan Original
171 165
172 166
173 167
174 168
175 169
176 170
177 171
178 172
179 173
180 174
181 175
182 176
183 177
184 178
185 179
186 180
187 181
188 182
189 183
190 184
191 185
192 186
193 187
194 188
195 189
196 190
197 191
198 192
199 193
200 194
< >
page |< < (175) of 778 > >|
181175OPTICAE LIBER V. ceſſariò, ut g p diuidat k o propter arcum a b, qué diuidit ex circulo a b t linea g t per æqualia: [peri-
pheria enim b o æquatur peripheriæ c a ex concluſo:
] & ſimiliter linea k o. Sit ergo punctum con-
curſus lineæ g p cum k o, punctum l:
& ducatur linea t p. Cum igitur duæ lineæ g p, g t ſint æquales:
[per15 d 1] erũt [per 5 p 1] duo anguli g p t, g t p æquales:
& [per 32 p 1] uterq; acutus. Ductaigitur
perpendiculari ſuper g t à punctot:
[per 11 p 1] cõtingetcirculum ſpeculi [per conſectarium 16 p 3]
& producta, cadet ſuper terminum diametri minoris circuli:
cum angulus, quem efficit cum g t, re-
ipiciat arcum ſemicirculi minoris circuli:
[per 31 p 3] & cũ to cadatſuprako, & k o producta tran-
ſeat per cẽtrum minoris circuli:
[per conſectarium 1 p 3, quia recta linea o k bifariam, & ad angulos
rectos ſecat rectam a b] neceſſario illa perpendicularis cadet ſuper terminum k o producta:
[per 31
p 3] & p t eſt inſerior illa perpẽdiculari, habito reſpectu ad n.
Igitur quæcung; linea ducatur à pun-
cto g ad lineam t p, ſecans diametrum illius circuli, quæ eſt o k:
cadet in punctum aliquod lineæ t p,
citra illam perpendicularem.
Cum igitur g p cadat in p, & ſecet o k: erit p citra perpendicularem, &
inſra arcum illius perpendicularis.
Facto igitur circulo tranſeunte per tria puncta a, b, p: tranſibit
quidem per l, & ſecabit circulum a b t in duobus punctis a, b:
& cum exeat à puncto b, & iterum re:
deat in punctum p, inferius punctot, cum p ſit citra illum circulum:
neceſſariò ſecabit illum in ter-
tio puncto:
quod eſt impoſsibile [& contra 10 p 3. ] Reſtat ergo, ut punctum a non reflectatur ad b à
duobus punctis arcus, interiacentis eorum diametros, id eſt arcus e z, ut uterq;
angulus conſtans
ex angulo incidentiæ & reflexionis ſit minor angulo a g d.
81. Duo punctain diuerſis diametris circuli (qui eſt cõmunis ſectio ſuperficierum, reflexio-
nis, & ſpeculi ſphærici caui) à centro inæquabiliter diſtantia: à duobus punctis peripheriæ com-
prehenſæ inter ſemidiametros, in quibus ipſa ſunt, inter ſe mutuò reflecti poſſunt. 35 p 8.
AMplius: dico quòd poſſunt reflecti duo puncta ad ſe, inæqualis longitudinis à centro, à duo-
bus punctis arcus ipſa reſpicientis, id eſt diametros, in quibus ſunt puncta illa, interiacẽtis.

Verbi gratia:
ſumptis duabus ſemidiametris in circulo ſpheræ, ſcilicet b d, g d: diuidatur an-
gulus earũ p æqualia, perſemidiametrũ e d:
[per 9 p 1] & in b d ſumatur punctũ m, ſupra punctũ,
in quod cadet perpendicularis ducta à puncto e ſuper b d:
& ſumatur [per 3 p 1] n d æqualis m d: &
[per 5 p 4] fiat circulus tranſiens per tria puncta d, m, n:
neceſſariò circulus ille tranſibit extra e. Si
enim per e:
fieret quadrangulũ à quatuor punctis d, n, e, m: & duo anguli illius qua dranguli ſibi op-
poſiti ſunt æquales duobus rectis:
[per 22 p 3] quod quidẽ non eſſet: cum linea e m ſit ſupra perpen
dicularem:
& ideo angulus e m d acutus: [per 16 p. 12 d 1] & ſimiliter ei oppoſitus ſuper n, acutus:
quia e n ſupra perpendicularem eſt.
[Quare in quadrilatero circulo inſcripto oppoſiti anguli eſſent
minores duobus rectis contra 22 p 3.
] Similis erit improbatio: ſi tranſeat circulus citra e. Tranſibit
ergo extra, & [per 10 p 3] ſecabit circulũ ſphæræ in duobus punctis, ſicut t, l:
& ducantur lineæ m t,
d t, n t, m i, d l, n l:
& ducatur linea m n ſecans t d in puncto f, lineam e d in puncto p. Palàm, cum m d
ſit æqualis n d [per fabricationem] & p d cõmunis, & angulus n d p æqualis angulo m d p:
[per fa-
bricationem] erit [per 4 p 1] triangulum æquale triangulo:
& erit angulus f p d rectus: [per 10 d 1]
igitur angulus p f d acutus [per 32 p 1] Ducatur [per 11 p 1] à pũcto f perpendicularis ſupert d:
quæ
ſit k f.
Palàm, quòd aliquod punctũ lineę n l, erit infe-
127[Figure 127]k e t o z r l g b x n p f m q d s n a rius pũcto k, ſumpta inferioritate reſpectu n: ſitillud
punctũ z:
& ducatur t z linea uſq; ; ad circulũ, cadẽs in
punctũ circuli:
quod ſit o. Arcus n o aut minor eſt ar-
cu tl:
aut nõ Sinõ fuerit minor: ſumatur ex eo arcus
minor;
& ad terminũ illius arcus ducatur linea à pun
cto t:
& erit idẽ, ac ſi arcus n o eſſet minor arcutl. Sit
igitur n o minortl.
Palàm [per 33 p 6] angulus t n l
erit maior angulo o t n, quia reſpicit maiorẽ arcum.

Secetur ex eo æqualis:
& ſit i n z: & ſuper punctum t
lineæ t m, fiat angulus, æqualis angulo o t n [ք 23 p 1]
qui ſit q t m.
Cum igiturangulus t m l ſit maior angu-
lo m t q:
[ք 33 p 6: quia peripheria t l ſubtenſa angulo
t m l, maior eſt extheſi, peripheria n o, ſubtẽſa angu-
lo n t o, cui æquatus eſt angulus m t q] cõcurret linea
t q cũ linea l m:
cõcurrat in puncto q. Cum igitur an-
gulus l m t ſit æqualis duob.
angulis m q t, m t q [per
32 p 1] & angulus l n t ſit ęqualis l m t [ք 27 p 3] ꝗa ſunt ſuք eũdẽ arcũ:
[l t] & angus in z ſit ęqualis
in t q:
[ք ſabricationẽ] erit angulus int æqualis angulo m q t: & ita triangulũ m q t ſimile triangulo
int [eſt enim angulus m t q æquatus angulo o t n:
itaq; ք 32 p 1 triãgula m t q, i t n ſunt æquiangula:
& ք 4 p.
1 d 6 ſimilia. ] Et ſimiliter triangulũ i n z eſt ſimile triãgulo t n z: [cõmunis enim eſt angulus
n z t:
& z n i æquatus eſt ipſi o t n: ergo ք 32 p 1. 4 p. 1 d 6 triãgula ſunt ſimilia] & ita ꝓportio n t ad t q,
ſicut n i ad m q:
& ſimiliter ꝓportio t n ad t z, ſicut in ad n z. Sed t z maior t q: qđ ſic patet. Sit r pun-
ctũ, in quo t z ſecat k f.
Angulus t freſtrectus: [nã k f քpẽdicularis ducta eſt ſuք t d] quare [ք 32 p 1]
angul9 ſtracutus.
Igitur angul9 qtfei ęqualis. [Quia enim ex theſi recta d m æquatur ipſi d n: æqua
bitur peripheria d m peripheriæ d n ք 28 p 3:
& angulus d t m angulo d t n: & m t q æquatus eſt o t n.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index