181175OPTICAE LIBER V.
ceſſariò, ut g p diuidat k o propter arcum a b, qué diuidit ex circulo a b t linea g t per æqualia:
[peri-
pheria enim b o æquatur peripheriæ c a ex concluſo: ] & ſimiliter linea k o. Sit ergo punctum con-
curſus lineæ g p cum k o, punctum l: & ducatur linea t p. Cum igitur duæ lineæ g p, g t ſint æquales:
[per15 d 1] erũt [per 5 p 1] duo anguli g p t, g t p æquales: & [per 32 p 1] uterq; acutus. Ductaigitur
perpendiculari ſuper g t à punctot: [per 11 p 1] cõtingetcirculum ſpeculi [per conſectarium 16 p 3]
& producta, cadet ſuper terminum diametri minoris circuli: cum angulus, quem efficit cum g t, re-
ipiciat arcum ſemicirculi minoris circuli: [per 31 p 3] & cũ to cadatſuprako, & k o producta tran-
ſeat per cẽtrum minoris circuli: [per conſectarium 1 p 3, quia recta linea o k bifariam, & ad angulos
rectos ſecat rectam a b] neceſſario illa perpendicularis cadet ſuper terminum k o producta: [per 31
p 3] & p t eſt inſerior illa perpẽdiculari, habito reſpectu ad n. Igitur quæcung; linea ducatur à pun-
cto g ad lineam t p, ſecans diametrum illius circuli, quæ eſt o k: cadet in punctum aliquod lineæ t p,
citra illam perpendicularem. Cum igitur g p cadat in p, & ſecet o k: erit p citra perpendicularem, &
inſra arcum illius perpendicularis. Facto igitur circulo tranſeunte per tria puncta a, b, p: tranſibit
quidem per l, & ſecabit circulum a b t in duobus punctis a, b: & cum exeat à puncto b, & iterum re:
deat in punctum p, inferius punctot, cum p ſit citra illum circulum: neceſſariò ſecabit illum in ter-
tio puncto: quod eſt impoſsibile [& contra 10 p 3. ] Reſtat ergo, ut punctum a non reflectatur ad b à
duobus punctis arcus, interiacentis eorum diametros, id eſt arcus e z, ut uterq; angulus conſtans
ex angulo incidentiæ & reflexionis ſit minor angulo a g d.
pheria enim b o æquatur peripheriæ c a ex concluſo: ] & ſimiliter linea k o. Sit ergo punctum con-
curſus lineæ g p cum k o, punctum l: & ducatur linea t p. Cum igitur duæ lineæ g p, g t ſint æquales:
[per15 d 1] erũt [per 5 p 1] duo anguli g p t, g t p æquales: & [per 32 p 1] uterq; acutus. Ductaigitur
perpendiculari ſuper g t à punctot: [per 11 p 1] cõtingetcirculum ſpeculi [per conſectarium 16 p 3]
& producta, cadet ſuper terminum diametri minoris circuli: cum angulus, quem efficit cum g t, re-
ipiciat arcum ſemicirculi minoris circuli: [per 31 p 3] & cũ to cadatſuprako, & k o producta tran-
ſeat per cẽtrum minoris circuli: [per conſectarium 1 p 3, quia recta linea o k bifariam, & ad angulos
rectos ſecat rectam a b] neceſſario illa perpendicularis cadet ſuper terminum k o producta: [per 31
p 3] & p t eſt inſerior illa perpẽdiculari, habito reſpectu ad n. Igitur quæcung; linea ducatur à pun-
cto g ad lineam t p, ſecans diametrum illius circuli, quæ eſt o k: cadet in punctum aliquod lineæ t p,
citra illam perpendicularem. Cum igitur g p cadat in p, & ſecet o k: erit p citra perpendicularem, &
inſra arcum illius perpendicularis. Facto igitur circulo tranſeunte per tria puncta a, b, p: tranſibit
quidem per l, & ſecabit circulum a b t in duobus punctis a, b: & cum exeat à puncto b, & iterum re:
deat in punctum p, inferius punctot, cum p ſit citra illum circulum: neceſſariò ſecabit illum in ter-
tio puncto: quod eſt impoſsibile [& contra 10 p 3. ] Reſtat ergo, ut punctum a non reflectatur ad b à
duobus punctis arcus, interiacentis eorum diametros, id eſt arcus e z, ut uterq; angulus conſtans
ex angulo incidentiæ & reflexionis ſit minor angulo a g d.
81. Duo punctain diuerſis diametris circuli (qui eſt cõmunis ſectio ſuperficierum, reflexio-
nis, & ſpeculi ſphærici caui) à centro inæquabiliter diſtantia: à duobus punctis peripheriæ com-
prehenſæ inter ſemidiametros, in quibus ipſa ſunt, inter ſe mutuò reflecti poſſunt. 35 p 8.
nis, & ſpeculi ſphærici caui) à centro inæquabiliter diſtantia: à duobus punctis peripheriæ com-
prehenſæ inter ſemidiametros, in quibus ipſa ſunt, inter ſe mutuò reflecti poſſunt. 35 p 8.
AMplius:
dico quòd poſſunt reflecti duo puncta ad ſe, inæqualis longitudinis à centro, à duo-
bus punctis arcus ipſa reſpicientis, id eſt diametros, in quibus ſunt puncta illa, interiacẽtis.
Verbi gratia: ſumptis duabus ſemidiametris in circulo ſpheræ, ſcilicet b d, g d: diuidatur an-
gulus earũ p æqualia, perſemidiametrũ e d: [per 9 p 1] & in b d ſumatur punctũ m, ſupra punctũ,
in quod cadet perpendicularis ducta à puncto e ſuper b d: & ſumatur [per 3 p 1] n d æqualis m d: &
[per 5 p 4] fiat circulus tranſiens per tria puncta d, m, n: neceſſariò circulus ille tranſibit extra e. Si
enim per e: fieret quadrangulũ à quatuor punctis d, n, e, m: & duo anguli illius qua dranguli ſibi op-
poſiti ſunt æquales duobus rectis: [per 22 p 3] quod quidẽ non eſſet: cum linea e m ſit ſupra perpen
dicularem: & ideo angulus e m d acutus: [per 16 p. 12 d 1] & ſimiliter ei oppoſitus ſuper n, acutus:
quia e n ſupra perpendicularem eſt. [Quare in quadrilatero circulo inſcripto oppoſiti anguli eſſent
minores duobus rectis contra 22 p 3. ] Similis erit improbatio: ſi tranſeat circulus citra e. Tranſibit
ergo extra, & [per 10 p 3] ſecabit circulũ ſphæræ in duobus punctis, ſicut t, l: & ducantur lineæ m t,
d t, n t, m i, d l, n l: & ducatur linea m n ſecans t d in puncto f, lineam e d in puncto p. Palàm, cum m d
ſit æqualis n d [per fabricationem] & p d cõmunis, & angulus n d p æqualis angulo m d p: [per fa-
bricationem] erit [per 4 p 1] triangulum æquale triangulo: & erit angulus f p d rectus: [per 10 d 1]
igitur angulus p f d acutus [per 32 p 1] Ducatur [per 11 p 1] à pũcto f perpendicularis ſupert d: quæ
ſit k f. Palàm, quòd aliquod punctũ lineę n l, erit infe-
127[Figure 127]k e t o z r l g b x n p f m q d s n a rius pũcto k, ſumpta inferioritate reſpectu n: ſitillud
punctũ z: & ducatur t z linea uſq; ; ad circulũ, cadẽs in
punctũ circuli: quod ſit o. Arcus n o aut minor eſt ar-
cu tl: aut nõ Sinõ fuerit minor: ſumatur ex eo arcus
minor; & ad terminũ illius arcus ducatur linea à pun
cto t: & erit idẽ, ac ſi arcus n o eſſet minor arcutl. Sit
igitur n o minortl. Palàm [per 33 p 6] angulus t n l
erit maior angulo o t n, quia reſpicit maiorẽ arcum.
Secetur ex eo æqualis: & ſit i n z: & ſuper punctum t
lineæ t m, fiat angulus, æqualis angulo o t n [ք 23 p 1]
qui ſit q t m. Cum igiturangulus t m l ſit maior angu-
lo m t q: [ք 33 p 6: quia peripheria t l ſubtenſa angulo
t m l, maior eſt extheſi, peripheria n o, ſubtẽſa angu-
lo n t o, cui æquatus eſt angulus m t q] cõcurret linea
t q cũ linea l m: cõcurrat in puncto q. Cum igitur an-
gulus l m t ſit æqualis duob. angulis m q t, m t q [per
32 p 1] & angulus l n t ſit ęqualis l m t [ք 27 p 3] ꝗa ſunt ſuք eũdẽ arcũ: [l t] & angus in z ſit ęqualis
in t q: [ք ſabricationẽ] erit angulus int æqualis angulo m q t: & ita triangulũ m q t ſimile triangulo
int [eſt enim angulus m t q æquatus angulo o t n: itaq; ք 32 p 1 triãgula m t q, i t n ſunt æquiangula:
& ք 4 p. 1 d 6 ſimilia. ] Et ſimiliter triangulũ i n z eſt ſimile triãgulo t n z: [cõmunis enim eſt angulus
n z t: & z n i æquatus eſt ipſi o t n: ergo ք 32 p 1. 4 p. 1 d 6 triãgula ſunt ſimilia] & ita ꝓportio n t ad t q,
ſicut n i ad m q: & ſimiliter ꝓportio t n ad t z, ſicut in ad n z. Sed t z maior t q: qđ ſic patet. Sit r pun-
ctũ, in quo t z ſecat k f. Angulus t freſtrectus: [nã k f քpẽdicularis ducta eſt ſuք t d] quare [ք 32 p 1]
angul9 ſtracutus. Igitur angul9 qtfei ęqualis. [Quia enim ex theſi recta d m æquatur ipſi d n: æqua
bitur peripheria d m peripheriæ d n ք 28 p 3: & angulus d t m angulo d t n: & m t q æquatus eſt o t n.
bus punctis arcus ipſa reſpicientis, id eſt diametros, in quibus ſunt puncta illa, interiacẽtis.
Verbi gratia: ſumptis duabus ſemidiametris in circulo ſpheræ, ſcilicet b d, g d: diuidatur an-
gulus earũ p æqualia, perſemidiametrũ e d: [per 9 p 1] & in b d ſumatur punctũ m, ſupra punctũ,
in quod cadet perpendicularis ducta à puncto e ſuper b d: & ſumatur [per 3 p 1] n d æqualis m d: &
[per 5 p 4] fiat circulus tranſiens per tria puncta d, m, n: neceſſariò circulus ille tranſibit extra e. Si
enim per e: fieret quadrangulũ à quatuor punctis d, n, e, m: & duo anguli illius qua dranguli ſibi op-
poſiti ſunt æquales duobus rectis: [per 22 p 3] quod quidẽ non eſſet: cum linea e m ſit ſupra perpen
dicularem: & ideo angulus e m d acutus: [per 16 p. 12 d 1] & ſimiliter ei oppoſitus ſuper n, acutus:
quia e n ſupra perpendicularem eſt. [Quare in quadrilatero circulo inſcripto oppoſiti anguli eſſent
minores duobus rectis contra 22 p 3. ] Similis erit improbatio: ſi tranſeat circulus citra e. Tranſibit
ergo extra, & [per 10 p 3] ſecabit circulũ ſphæræ in duobus punctis, ſicut t, l: & ducantur lineæ m t,
d t, n t, m i, d l, n l: & ducatur linea m n ſecans t d in puncto f, lineam e d in puncto p. Palàm, cum m d
ſit æqualis n d [per fabricationem] & p d cõmunis, & angulus n d p æqualis angulo m d p: [per fa-
bricationem] erit [per 4 p 1] triangulum æquale triangulo: & erit angulus f p d rectus: [per 10 d 1]
igitur angulus p f d acutus [per 32 p 1] Ducatur [per 11 p 1] à pũcto f perpendicularis ſupert d: quæ
ſit k f. Palàm, quòd aliquod punctũ lineę n l, erit infe-
127[Figure 127]k e t o z r l g b x n p f m q d s n a rius pũcto k, ſumpta inferioritate reſpectu n: ſitillud
punctũ z: & ducatur t z linea uſq; ; ad circulũ, cadẽs in
punctũ circuli: quod ſit o. Arcus n o aut minor eſt ar-
cu tl: aut nõ Sinõ fuerit minor: ſumatur ex eo arcus
minor; & ad terminũ illius arcus ducatur linea à pun
cto t: & erit idẽ, ac ſi arcus n o eſſet minor arcutl. Sit
igitur n o minortl. Palàm [per 33 p 6] angulus t n l
erit maior angulo o t n, quia reſpicit maiorẽ arcum.
Secetur ex eo æqualis: & ſit i n z: & ſuper punctum t
lineæ t m, fiat angulus, æqualis angulo o t n [ք 23 p 1]
qui ſit q t m. Cum igiturangulus t m l ſit maior angu-
lo m t q: [ք 33 p 6: quia peripheria t l ſubtenſa angulo
t m l, maior eſt extheſi, peripheria n o, ſubtẽſa angu-
lo n t o, cui æquatus eſt angulus m t q] cõcurret linea
t q cũ linea l m: cõcurrat in puncto q. Cum igitur an-
gulus l m t ſit æqualis duob. angulis m q t, m t q [per
32 p 1] & angulus l n t ſit ęqualis l m t [ք 27 p 3] ꝗa ſunt ſuք eũdẽ arcũ: [l t] & angus in z ſit ęqualis
in t q: [ք ſabricationẽ] erit angulus int æqualis angulo m q t: & ita triangulũ m q t ſimile triangulo
int [eſt enim angulus m t q æquatus angulo o t n: itaq; ք 32 p 1 triãgula m t q, i t n ſunt æquiangula:
& ք 4 p. 1 d 6 ſimilia. ] Et ſimiliter triangulũ i n z eſt ſimile triãgulo t n z: [cõmunis enim eſt angulus
n z t: & z n i æquatus eſt ipſi o t n: ergo ք 32 p 1. 4 p. 1 d 6 triãgula ſunt ſimilia] & ita ꝓportio n t ad t q,
ſicut n i ad m q: & ſimiliter ꝓportio t n ad t z, ſicut in ad n z. Sed t z maior t q: qđ ſic patet. Sit r pun-
ctũ, in quo t z ſecat k f. Angulus t freſtrectus: [nã k f քpẽdicularis ducta eſt ſuք t d] quare [ք 32 p 1]
angul9 ſtracutus. Igitur angul9 qtfei ęqualis. [Quia enim ex theſi recta d m æquatur ipſi d n: æqua
bitur peripheria d m peripheriæ d n ք 28 p 3: & angulus d t m angulo d t n: & m t q æquatus eſt o t n.