Clavius, Christoph, Geometria practica

Table of Notes

< >
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
< >
page |< < (158) of 450 > >|
188158GEOMETR. PRACT. angulum, vnius in alterum; adeo vt in quadrato ſatis ſit ducere vnum latus in
ſe, vt eius area cognoſcatur:
quippe cum duo latera circa vnum angulum re-
119[Figure 119] ctum æqualia ſint.
Vtin quadrato A B C D,
cuius ſingula latera quinos palmos con-
tinent, ſi latus A B, quinque palmorum
in ſe ducatur, producentur 25.
quadrata,
quorum quodlibet habet latus vnius pal-
mi;
atque tot palmos quadratos conti-
nere dicetur area quadrati A B C D.
At
area rectanguli altera parte longioris
EFGH, cuius vnum latus circa rectum an-
gulum continet 5.
pedes, & alterum 3. dicetur continere 15. palmos quadra-
tos, propterea quod ex mutua laterum 5.
& 3. multiplicatione numerus 15.
procreatur.
11Vt camp{us}
rectangul{us}
menſuretur,
quid agen-
dum.
2. Itaqve ſi campum aliquem rectangulum, vel parallelo grammum re-
ctangulum metiri iubeamur, menſuranda erunt per aliquam menſuram notam,
vt per palmum, vel pedem, &
c. duo latera circa angulum rectum. Nam vno
in alterum ducto, area propoſiti campi, vel parallelogrammi rectanguli produ-
cetur, vt dictum eſt.
DE AREA TRIANGVLORVM
Capvt II.
1. Qvando trianguli omnia tria latera cognita ſunt, duabus viis eius area
5656[Handwritten note 56] cognoſci poteſt.
Prima, quæ accuratiſsima eſt, ita ſe habet. Colligantur omnia
latera in vnam ſummam:
Ex hui{us} ſummæ ſemiſſe ſubtr ahantur ſingula latera, vt ha-
beantur tr{es} differentiæ inter illam ſemiſſem, &
latera ſingula: Poſtremo tr{es} hæ diffe-
rentiæ, &
dicta ſemiſſis inter ſe mutuo multiplicentur. Producti enim numeriradix
quadrata erit area trianguli quæſita.
5757[Handwritten note 57]
Verbigratia, ſi latera ſint 10. 17. 21. erit ſumma ex illis collecta 48. & ſemiſsis
24.
Differentiæ autem inter hanc ſemiſſem, & latera erunt 147. 3. Hæ inter ſe
multip licatæ) ducendo primum 14.
in 7. deinde productum in 3.) faciunt
294.
quæ ducta in 24. ſemiſſem prædictam, producunt 7056. cuius numeriradix
quadrata 84.
erit area dicti trianguli, cuius latera ſunt 10. 17. 21. Rurſus ſi in alio
quopiam triangulo latera ſint 13.
14. 15. inueniemus eandem a@eam. Nam ſ@m̃a
laterum eſt 42.
ſemiſsis 21. Differẽtię inter hanc ſemiſſem, & tria latera ſunt 8. 7. 6.
quæ inter ſe multip licatæ faciunt 336. quæ ducta in 21. ſemiſſem prædictam effi-
ciunt 7056.
cuius numeri quadrata radix 84. dabit aream trianguli, quod lateri-
bus 13.
14. 15. continetur. Denique ſi detur triangulum A B C, in quo latus A B,
7.
B C, 10. & A C, 11. ſumma omnium eſt 28. & ſemiſsis 14. quæ latera ſuperat hiſ-
ce numeris 7.
4. 3. qui inter ſemultip licati faciunt 84. quę ducta in 14. ſemiſſem
ſummæ gignunt numerum 1176.
cuius radix quadrata 34 {20/69}. ferè dabit aream
trianguli A B C.
Ex quo colliges, non omnis trianguli aream eſſe numerum ra-
tionalem:
propterea quod numerus vltimo loco productus non eſt ſemper
quadratus, vt in poſtremo hoc exemplo @ontigit.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index