Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
181
182
183
(1)
184
(2)
185
(3)
186
(4)
187
(5)
188
(6)
189
(7)
190
(8)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 347
>
page
|<
<
(6)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div536
"
type
="
section
"
level
="
1
"
n
="
223
">
<
pb
o
="
6
"
file
="
0188
"
n
="
188
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div541
"
type
="
section
"
level
="
1
"
n
="
224
">
<
head
xml:id
="
echoid-head232
"
xml:space
="
preserve
">THEOR. III. PROP. VI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5279
"
xml:space
="
preserve
">MAXIMA linearum ad vniuerſam Ellipſis peripheriam du-
<
lb
/>
cibilium, à puncto maioris axis, quod non ſit centrum, ea eſt,
<
lb
/>
in qua centrum. </
s
>
<
s
xml:id
="
echoid-s5280
"
xml:space
="
preserve
">Et eductarum ad peripheriam maioris Ellipti-
<
lb
/>
cæ portionis, cuius baſis, ſit recta ad axim ordinatim ducta, ex
<
lb
/>
prędicto puncto; </
s
>
<
s
xml:id
="
echoid-s5281
"
xml:space
="
preserve
">quę cum MAXIMA minorem conſtituit an-
<
lb
/>
gulum, maior eſt. </
s
>
<
s
xml:id
="
echoid-s5282
"
xml:space
="
preserve
">MINIMA verò in eadem portione, eſt ip-
<
lb
/>
ſa ſemi-applicata.</
s
>
<
s
xml:id
="
echoid-s5283
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5284
"
xml:space
="
preserve
">ESto Ellipſis A B C D, cuius axis maior B D, minor H I, centrum E,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s5285
"
xml:space
="
preserve
">quodlibet aliud punctum in maiori axe ſit F. </
s
>
<
s
xml:id
="
echoid-s5286
"
xml:space
="
preserve
">Dico _MAXIMAM_
<
lb
/>
ducibilium ab F ad vniuerſam Ellipſis peripheriam eſſe F D, in qua cen-
<
lb
/>
trum.</
s
>
<
s
xml:id
="
echoid-s5287
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5288
"
xml:space
="
preserve
">Nam, quod D F ſit maior reliqua F B patet, cum F D, maior ſit axis
<
lb
/>
dimidio, F B verò minor.</
s
>
<
s
xml:id
="
echoid-s5289
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5290
"
xml:space
="
preserve
">Iam, ad quodcunque Ellipticæ peri-
<
lb
/>
<
figure
xlink:label
="
fig-0188-01
"
xlink:href
="
fig-0188-01a
"
number
="
148
">
<
image
file
="
0188-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0188-01
"/>
</
figure
>
pheriæ punctum G, ſit quædam educta
<
lb
/>
F G, & </
s
>
<
s
xml:id
="
echoid-s5291
"
xml:space
="
preserve
">iungatnr E G. </
s
>
<
s
xml:id
="
echoid-s5292
"
xml:space
="
preserve
">Itaque cum ſe-
<
lb
/>
mi-axis maior E D, ſit _MAXIMA_
<
note
symbol
="
a
"
position
="
left
"
xlink:label
="
note-0188-01
"
xlink:href
="
note-0188-01a
"
xml:space
="
preserve
">86. pri-
<
lb
/>
mi huius.</
note
>
mi-diametrorum, ipſa maior erit E G,
<
lb
/>
quibus communi addita E F, erit tota
<
lb
/>
D F maior duobus G E, E F, & </
s
>
<
s
xml:id
="
echoid-s5293
"
xml:space
="
preserve
">eò ma-
<
lb
/>
ior vnica F G. </
s
>
<
s
xml:id
="
echoid-s5294
"
xml:space
="
preserve
">Quare F D eſt ad vni-
<
lb
/>
uerſam peripheriam ducibilium _MAXI_-
<
lb
/>
_MA_.</
s
>
<
s
xml:id
="
echoid-s5295
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5296
"
xml:space
="
preserve
">Inſuper applicetur ex F axi ordinata
<
lb
/>
A F C, & </
s
>
<
s
xml:id
="
echoid-s5297
"
xml:space
="
preserve
">ad peripheriam eiuſdem qua-
<
lb
/>
drantis H D E, ductæ ſint ex F duę quę-
<
lb
/>
libet F L, F M, & </
s
>
<
s
xml:id
="
echoid-s5298
"
xml:space
="
preserve
">F L minorem, F M
<
lb
/>
verò maiorem angulum efficiat cum
<
lb
/>
_MAXIMA_ F D. </
s
>
<
s
xml:id
="
echoid-s5299
"
xml:space
="
preserve
">Dico F L maiorem eſſe
<
lb
/>
F M. </
s
>
<
s
xml:id
="
echoid-s5300
"
xml:space
="
preserve
">Iunctis enim E L, E M; </
s
>
<
s
xml:id
="
echoid-s5301
"
xml:space
="
preserve
">erit E
<
note
symbol
="
b
"
position
="
left
"
xlink:label
="
note-0188-02
"
xlink:href
="
note-0188-02a
"
xml:space
="
preserve
">ibidem.</
note
>
maior E M, quæ producatur, & </
s
>
<
s
xml:id
="
echoid-s5302
"
xml:space
="
preserve
">fiat E O æqualis E L, & </
s
>
<
s
xml:id
="
echoid-s5303
"
xml:space
="
preserve
">iungatur F O:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5304
"
xml:space
="
preserve
">erunt igitur duo latera F E, E L, duobus F E, E O æqualia, alterum al-
<
lb
/>
teri, ſed angulus F E L maior eſt angulo F E O, ergo baſis F L, maior eſt
<
lb
/>
F O, ſed F O maior eſt F M, (cum in triangulo F M O angulus ad M ob-
<
lb
/>
tuſus ſit, eò quod ſit maior obtuſo F E M) quare F L eò maior erit ipſa
<
lb
/>
F M, quę cum _MAXIMA_ maiorem efficit angulum: </
s
>
<
s
xml:id
="
echoid-s5305
"
xml:space
="
preserve
">ſimili modo oſtende-
<
lb
/>
tur F M maiorem eſſe educta F H.</
s
>
<
s
xml:id
="
echoid-s5306
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5307
"
xml:space
="
preserve
">De eductis verò ad portionem peripheriæ H A, ita ratiocinabimur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5308
"
xml:space
="
preserve
">Sit enim quælibet F P, & </
s
>
<
s
xml:id
="
echoid-s5309
"
xml:space
="
preserve
">per H ſit Ellipſim contingens H Q, quæ cum
<
lb
/>
æquidiſtet axi B F D, ſecabit omnino productam F P extra Ellipſim in Q; </
s
>
<
s
xml:id
="
echoid-s5310
"
xml:space
="
preserve
">
<
lb
/>
eritque in triangulo F Q H, latus F H maius latere F Q (cum </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>