Angeli, Stefano degli, Miscellaneum hyperbolicum et parabolicum : in quo praecipue agitur de centris grauitatis hyperbolae, partium eiusdem, atque nonnullorum solidorum, de quibus nunquam geometria locuta est, parabola nouiter quadratur dupliciter, ducuntur infinitarum parabolarum tangentes, assignantur maxima inscriptibilia, minimaque circumscriptibilia infinitis parabolis, conoidibus ac semifusis parabolicis aliaque geometrica noua exponuntur scitu digna

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < (178) of 232 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div160" type="section" level="1" n="102">
          <p>
            <s xml:id="echoid-s3273" xml:space="preserve">
              <pb o="178" file="0190" n="190"/>
            diolanenſis eruditiſſimus geometra in ſua geometria
              <lb/>
            applicationum, ampliauit ad altiores poteſtates, o-
              <lb/>
            ſtendendo applicationem aliarum poteſtatum ſerua-
              <lb/>
            re ſimilem ordinem partium ad quas fit applicatio;
              <lb/>
            </s>
            <s xml:id="echoid-s3274" xml:space="preserve">adeo vt magnitudo ad quam fieri debet applicatio
              <lb/>
            ſit ſecanda in tot partes quota eſt magnitudo, quæ
              <lb/>
            debet applicari, in ordine graduum; </s>
            <s xml:id="echoid-s3275" xml:space="preserve">& </s>
            <s xml:id="echoid-s3276" xml:space="preserve">applicatio
              <lb/>
            ſit facienda ad illarum vnicam. </s>
            <s xml:id="echoid-s3277" xml:space="preserve">V.</s>
            <s xml:id="echoid-s3278" xml:space="preserve">g. </s>
            <s xml:id="echoid-s3279" xml:space="preserve">ſi ad partem
              <lb/>
            datæ A B, ſit applicandum parallelogrammum di-
              <lb/>
            ficiens, & </s>
            <s xml:id="echoid-s3280" xml:space="preserve">c. </s>
            <s xml:id="echoid-s3281" xml:space="preserve">hoc eſt
              <lb/>
              <figure xlink:label="fig-0190-01" xlink:href="fig-0190-01a" number="78">
                <image file="0190-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/PVNDER1Y/figures/0190-01"/>
              </figure>
            ſi A B, ſit ſic ſe-
              <lb/>
            canda in C, vtre-
              <lb/>
            ctangulum A C B,
              <lb/>
            ſit omnium maxi-
              <lb/>
            mum illorum, quæ
              <lb/>
            poſſunt fieri ex
              <lb/>
            partibus A B; </s>
            <s xml:id="echoid-s3282" xml:space="preserve">pun-
              <lb/>
            ctum C, ſit illud
              <lb/>
            quod biſſecat A C.
              <lb/>
            </s>
            <s xml:id="echoid-s3283" xml:space="preserve">Si veto ſit applicandum parallelepipedum, hoc eſt ſi
              <lb/>
            A B, taliter ſit ſecanda in C, vt ſolidum factum ſub
              <lb/>
            A C, in quadratum C B, ſit omnium maximum; </s>
            <s xml:id="echoid-s3284" xml:space="preserve">
              <lb/>
            A C, debet eſſe tertia pars A B. </s>
            <s xml:id="echoid-s3285" xml:space="preserve">Si vero ſit appli-
              <lb/>
            candum planoplanum, adeo vt factum ſub A C, in
              <lb/>
            cubum C B, ſit omnium maximum. </s>
            <s xml:id="echoid-s3286" xml:space="preserve">A C; </s>
            <s xml:id="echoid-s3287" xml:space="preserve">debet
              <lb/>
            eſſe quarta pars A B. </s>
            <s xml:id="echoid-s3288" xml:space="preserve">Et ſic in infinitum in altiori-
              <lb/>
            bus poteſtatibus. </s>
            <s xml:id="echoid-s3289" xml:space="preserve">Hæc ergo doctrina nobis eſt ne-
              <lb/>
            ceſſaria pro impoſterum dicendis. </s>
            <s xml:id="echoid-s3290" xml:space="preserve">Quam etiam </s>
          </p>
        </div>
      </text>
    </echo>