Schott, Gaspar, Mechanica hydraulico-pneumatica. Pars I. Mechanicae Hydraulico-pnevmaticae Theoriam continet. , 1657

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < of 203 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb xlink:href="051/01/191.jpg" pagenum="160"/>
            <p type="margin">
              <s>
                <margin.target id="marg277"/>
              Aqua in­
                <lb/>
              ſtar colum­
                <lb/>
              na effluit
                <lb/>
              ex forami­
                <lb/>
              ne baſis in
                <lb/>
              vaſe.</s>
            </p>
            <figure id="id.051.01.191.1.jpg" xlink:href="051/01/191/1.jpg" number="72"/>
            <p type="main">
              <s>
                <emph type="center"/>
              Propoſitio I. Theorema I.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s>
                <emph type="center"/>
              Per foramina æqualia, æquè à ſummo tubi diſtantia,
                <lb/>
              ſive in baſi, ſive in latere, æquali tempore æquales fluunt
                <lb/>
              aquarum quantitates.
                <emph.end type="center"/>
              </s>
            </p>
            <figure id="id.051.01.191.2.jpg" xlink:href="051/01/191/2.jpg" number="73"/>
            <p type="main">
              <s>IN vaſe, ſeu tubo AB, ſint foramina C & D
                <lb/>
              æqualia, & horizontalia (& eadem eſt ra­
                <lb/>
              tio, ſi lateralia eſſent, æquè à ſummitate di­
                <lb/>
              ſtantia) per quæ aqua æquali, vel potiùs eo­
                <lb/>
              dem tempore decurrat. </s>
              <s>Dico, aquas de­
                <lb/>
                <arrow.to.target n="marg278"/>
                <lb/>
              curſas (liceat ita loqui) eſſe æquales inter
                <lb/>
              ſe. </s>
              <s>Vbi enim omnia ſunt æqualia, effectus
                <lb/>
              ſunt æquales, per Petitionem primam hujus
                <lb/>
              Capitis: at hîc omnia ſunt æqualia, ſcilicet foramina, columnæ
                <lb/>
              aqueæ, vis premendi, & ſimilia; ergo effectus, qui ſunt aquæ
                <lb/>
              decurſæ, æquales ſunt. </s>
              <s>Per foramina ergo æqualia, &c. </s>
              <s>Quod
                <lb/>
              erat oſten dendum. </s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg278"/>
                <emph type="italics"/>
              Aquæ flu­
                <lb/>
              xus exæqua­
                <lb/>
              libus fora­
                <lb/>
              minibus va­
                <lb/>
              ſorum.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>
                <emph type="center"/>
              Annotatio.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s>
                <emph type="italics"/>
              ET hoc verum eſt, ſive vas ſit ſemper plenum, ſive non. </s>
              <s>Eadem eſt
                <lb/>
              ratio, ſi vaſa ſint cylindrica, & foramina rotunda, ut diximus et­
                <lb/>
              iam paulò antè, & ſemper in ſequentibus dictum volumus.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>
                <emph type="center"/>
              Poriſma.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s>SEquitur hinc, ſi ex duobus eiuſdem vaſis foraminibus æqua­
                <lb/>
              liter à ſummo vaſis diſtantibus aquæ decurrentes eodem tem­
                <lb/>
              pore æquales ſunt, foramina eſſe æqualia. </s>
            </p>
            <p type="main">
              <s>
                <emph type="center"/>
              Propoſitio II. Theorema II.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s>
                <emph type="center"/>
              Aquæ è foraminibus æqualiter à ſummo tubi diſtanti­
                <lb/>
              bus decurrentes, ſunt inter ſe ut foramina.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s>IN tubo ſeu vaſe AB, ſint duo foramina rectangula inæqualia,
                <lb/>
              C minus, & D maius, ſed ambo horizontalia,
                <expan abbr="atq;">atque</expan>
              adeo æ­
                <lb/>
              quèalta, ſeu æqualiter à vaſis ſummitate remota; & aqua de­
                <lb/>
              curſa per C ſit E, aqua verò decurſa per D ſit F. </s>
              <s>Dico, a­
                <lb/>
              quam E decurſam per C, habere ſe ad aquam F decurſam </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>