Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of contents

< >
[Item 1.]
[2.] CHRISTIANI HUGENII AZULICHEM, Dum viveret Zelhemi Toparchæ, OPERA VARIA. Volumen Secundum.
[3.] Lugduni Batavorum, Apud JANSSONIOS VANDER A@, Bibliopolas. MDCCXXIV.
[4.] MAX-PLANCK-INSTITUT FOR WISSENSCHAFTSGESCHICHTE Bibliothek
[5.] CHRISTIANI HUGENII OPERA GEOMETRICA. Tomus Secundus.
[6.] Tomi ſecundi contenta.
[7.] CHRISTIANI HUGENII, Const. F. THEOREMATA DE QUADRATURA HYPERBOLES, ELLIPSIS ET CIRCULI, EX DATO PORTIONUM GRAVITATIS CENTRO. Quibus ſubjuncta eſt Ε’ξέ{τα}{σι}ς Cyclometriæ Cl. Viri Gregorii à S. Vincentio, editæ Anno CIɔ Iɔcxlvii.
[8.] AD LECTOREM.
[9.] CHRISTIANI HUGENII, Const. F. THEOREMATA DE QUADRATURA HYPERBOLES, ELLIPSIS, ET CIRCULI, EX DATO PORTIONUM GRAVITATIS CENTRO Theorema I.
[10.] Theorema II.
[11.] Theorema III.
[12.] Theorema IV.
[13.] Lemma.
[14.] Theorema V.
[15.] Theorema VI.
[16.] Theorema VII.
[17.] Theorema VIII.
[18.] ἘΞἘΤΑΣΙΣ CYCLOMETRIÆ CLARISSIMI VIRI, GREGORII à S. VINCENTIO, S. J. Editæ Anno D. cIↄ Iↄc XLVII.
[19.] FINIS.
[20.] CHRISTIANI HUGENII, Const. F. AD C. V. FRAN. XAVERIUM AINSCOM. S.I. EPISTOLA, Qua diluuntur ea quibus Ε’ξε{τα}{σι}ς Cyclometriæ Gregorii à Sto. Vincentio impugnata fuit.
[21.] CHRISTIANI HUGENII, Const. F. AD C. V. FRAN. XAVERIUM AINSCOM. S. I. EPISTOLA. Cl. Viro D°. XAVERIO AINSCOM CHRISTIANUS HUGENIUS S. D.
[22.] CHRISTIANI HUGENII, Const. F. DE CIRCULI MAGNITUDINE INVENTA. ACCEDUNT EJUSDEM Problematum quorundam illuſtrium Conſtructiones.
[23.] PRÆFATIO.
[24.] CHRISTIANI HUGENII, Const. f. DE CIRCULI MAGNITUDINE INVENTA. Theorema I. Propositio I.
[25.] Theor. II. Prop. II.
[26.] Theor. III. Prop. III.
[27.] Theor. IV. Prop. IV.
[28.] Theor. V. Prop. V.
[29.] Theor. VI. Prop. VI.
[30.] Theor. VII. Prop. VII.
< >
page |< < (320) of 568 > >|
20320THEOR. DE QUADRAT. rantur duæ æquales E S, B P, & inſuper alia P D. Dico
iterum, id quo rectangulum E D B excedit E P B, æquari
rectangulo S D P.
Rectangulum enim E D B æquale eſt iſtis
duobus, rectangulo E D P, &
rectangulo ſub E D, P B;
horum autem E D P rurſus æquale eſt duobus, rectangulo ni-
mirum S D P, &
ei quod continetur ſub E S, D P, ſive
rectangulo D P B.
Igitur rectangulum E D B iſtis tribus æ-
quale eſt rectangulis, S D P, D P B, &
rectangulo ſub
E D, P B;
horum vero duo poſtrema æquantur rectangu-
lo E P B;
ergo rectangulum E D B æquale eſt duobus, re-
ctangulo nimirum S D P &
E P B, unde apparet exceſ-
ſum rectanguli E D B ſupra rectangulum E P B æquari re-
ctangulo S D P.
Theorema V.
DAtâ portione hyperboles, vel ellipſis vel cir-
culi portione, dimidiâ figurâ non majore;
ſi ad
diametrum conſtituatur triangulus hujuſmodi, qui
verticem habeat in centro figuræ, &
baſin portio-
nis baſi æqualem &
parallelam; eam verò quæ de-
inceps à vertice ad mediam baſin pertingit tantam,
ut poſſit ipſa rectangulum comprehenſum lineis, quæ
inter portionis baſin &
terminos diametri figuræ in-
terjiciuntur.
Erit magnitudinis, quæ ex portione &
præſcripto triangulo componitur, centrum gravita-
tis punctum idem quod eſt trianguli vertex, cen-
trum nimirum figuræ.
Data ſit portio hyberboles, vel ellipſis vel circuli portio
11TAB. XXXV.
Fig. 1. 2. 3.
dimidiâ figurâ non major, A B C.
Diameter ejus ſit B D,
&
figuræ diameter B E, in cujus medio centrum figuræ F.
Et ſumatur F G quæ poſſit rectangulum B D E, ductâque
K G H æquali &
parallelâ baſi A C, quæque ad G

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index