Alvarus, Thomas
,
Liber de triplici motu
,
1509
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
>
11
12
13
14
15
16
17
18
19
20
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
>
page
|<
<
of 290
>
>|
<
echo
version
="
1.0
">
<
text
xml:lang
="
la
">
<
div
xml:id
="
N10132
"
level
="
1
"
n
="
1
"
type
="
body
">
<
div
xml:id
="
N1194D
"
level
="
2
"
n
="
2
"
type
="
other
"
type-free
="
pars
">
<
pb
chead
="
Secunde partis
"
file
="
0020
"
n
="
20
"/>
<
p
xml:id
="
N11956
">
<
s
xml:id
="
N11957
"
xml:space
="
preserve
">¶ Sequitur ſecunda pars de pro-
<
lb
/>
portionalitatibus et de quibuſdam
<
lb
/>
proportionum et proportionalita
<
lb
/>
tum proprietatibus et accidentiis.</
s
>
</
p
>
<
div
xml:id
="
N11960
"
level
="
3
"
n
="
1
"
type
="
chapter
"
type-free
="
capitulum
">
<
head
xml:id
="
N11965
"
xml:space
="
preserve
">Capitulum primum in quo a:
<
lb
/>
gitur de diffinitione et diuiſione
<
lb
/>
proportionalitatum.</
head
>
<
note
position
="
left
"
xml:id
="
N1196C
"
xml:space
="
preserve
">Nicho-
<
lb
/>
machus.</
note
>
<
p
xml:id
="
N11972
">
<
s
xml:id
="
N11973
"
xml:space
="
preserve
">pRoportionalitas iux
<
lb
/>
ta nichomachi ſententiam
<
lb
/>
plurimum ad aſtrologiam
<
lb
/>
muſicam, veterum lectio-
<
lb
/>
nes intelligendas confert.
<
lb
/>
</
s
>
<
s
xml:id
="
N1197F
"
xml:space
="
preserve
">Sed profecto ad phiſicam
<
lb
/>
phiſicaſ calculatões nõ mi
<
lb
/>
nꝰ cõducit </
s
>
<
s
xml:id
="
N11986
"
xml:space
="
preserve
">Ad cuiꝰ ītelligēti
<
lb
/>
am aduertēdū eſt differētiã eſſe inter ꝓportionē et
<
lb
/>
ꝓportionalitatē.
<
note
position
="
left
"
xlink:href
="
note-0020-01a
"
xlink:label
="
note-0020-01
"
xml:id
="
N11A73
"
xml:space
="
preserve
">ꝓportio.</
note
>
</
s
>
<
s
xml:id
="
N11992
"
xml:space
="
preserve
">¶ Proportio em̄ / vt dictum eſt
<
lb
/>
habitudo eſt duarū quantitatū ad inuicē cõpara-
<
lb
/>
tarū. </
s
>
<
s
xml:id
="
N11999
"
xml:space
="
preserve
">De qua ſuperius dictū eſt.
<
note
position
="
left
"
xlink:href
="
note-0020-02a
"
xlink:label
="
note-0020-02
"
xml:id
="
N11A79
"
xml:space
="
preserve
">Propor
<
lb
/>
tiõalitaſ</
note
>
</
s
>
<
s
xml:id
="
N119A1
"
xml:space
="
preserve
">¶ Sed ꝓportiõa
<
lb
/>
litas eſt duarū ꝓportionū vel pluriū vnius ad al
<
lb
/>
teram certa habitudo. </
s
>
<
s
xml:id
="
N119A8
"
xml:space
="
preserve
">Ita vt ꝓportio: habitudo
<
lb
/>
ſit numerorū ſiue quantitatū: ꝓportionalitas ve
<
lb
/>
ro proportionū collatio exiſtat. </
s
>
<
s
xml:id
="
N119AF
"
xml:space
="
preserve
">Sicut em̄ numeri
<
lb
/>
ad inuicē cõparãtur in maioritate et in minoritate
<
lb
/>
ita ꝓportiones ad inuiceꝫ in maioritate et minori
<
lb
/>
tate referūtur. </
s
>
<
s
xml:id
="
N119B8
"
xml:space
="
preserve
">¶ Naſcitur hinc oēm ꝓportionali
<
lb
/>
tatem ꝓportionē eſſe: quãuis nõ omīs ꝓportio ꝓ-
<
lb
/>
portionalitas exiſtat.
<
note
position
="
left
"
xlink:href
="
note-0020-03a
"
xlink:label
="
note-0020-03
"
xml:id
="
N11A81
"
xml:space
="
preserve
">Correla
<
lb
/>
riū ṗmū</
note
>
</
s
>
<
s
xml:id
="
N119C4
"
xml:space
="
preserve
">Patet hoc correlariū ex ſe
<
lb
/>
</
s
>
<
s
xml:id
="
N119C8
"
xml:space
="
preserve
">Nam ꝓportio, aut genus, aut loco generis ſe ha-
<
lb
/>
bet cū huic termino ꝓportionalitas comparatur
<
lb
/>
</
s
>
<
s
xml:id
="
N119CE
"
xml:space
="
preserve
">Et aduerte / in ꝓpoſito idem eſt medietas equa-
<
lb
/>
litas et ꝓportionalitas: et eodē modo diffiniūtur.
<
lb
/>
<
note
position
="
left
"
xlink:href
="
note-0020-04a
"
xlink:label
="
note-0020-04
"
xml:id
="
N11A89
"
xml:space
="
preserve
">medietaſ</
note
>
</
s
>
<
s
xml:id
="
N119DA
"
xml:space
="
preserve
">Medietas em̄ eſt duarum vel pluriū ꝓportionum
<
lb
/>
vnius ad alterã certa habitudo: vt habitudo que
<
lb
/>
eſt inter ꝓportionē duplã et quadrupã.
<
note
position
="
left
"
xlink:href
="
note-0020-05a
"
xlink:label
="
note-0020-05
"
xml:id
="
N11A8F
"
xml:space
="
preserve
">Diuiſio
<
lb
/>
ꝓportio
<
lb
/>
nalitate.</
note
>
</
s
>
<
s
xml:id
="
N119E6
"
xml:space
="
preserve
">¶ Poſita
<
lb
/>
diffintione ꝓportionalitatis ponēda eſt diuiſio.
<
lb
/>
<
note
position
="
left
"
xlink:href
="
note-0020-06a
"
xlink:label
="
note-0020-06
"
xml:id
="
N11A99
"
xml:space
="
preserve
">Undecim
<
lb
/>
medieta
<
lb
/>
tes.</
note
>
</
s
>
<
s
xml:id
="
N119F2
"
xml:space
="
preserve
">Apud recentiores mathematicos vndecim ſunt
<
lb
/>
ꝓportionalitates ſiue medietates: quarū vltima
<
lb
/>
perfectiſſima eſt: qm̄ in ea oēs conſonãtie muſica
<
lb
/>
les ſimplices reperiūtur. </
s
>
<
s
xml:id
="
N119FB
"
xml:space
="
preserve
">Sed apud ãtiquos tres
<
lb
/>
ꝓportionalitates famate reperiūtur: videlicet a-
<
lb
/>
rithmetica, geometrica, et muſica ſiue harmonica
<
lb
/>
<
note
position
="
left
"
xlink:href
="
note-0020-07a
"
xlink:label
="
note-0020-07
"
xml:id
="
N11AA3
"
xml:space
="
preserve
">ꝓportio
<
lb
/>
nalitas
<
lb
/>
arithme
<
lb
/>
tica.</
note
>
</
s
>
<
s
xml:id
="
N11A09
"
xml:space
="
preserve
">¶ Unde ꝓportionalitas arithmetica eſt quando
<
lb
/>
diſpoſitis tribus quattuor vel pluribus terminis
<
lb
/>
inter eos eedem differētie: ſed nõ eedem ꝓportio-
<
lb
/>
nes reperiūtur. </
s
>
<
s
xml:id
="
N11A12
"
xml:space
="
preserve
">Exemplū / vt diſpoſitis his tribus
<
lb
/>
terminis ſine numeris .1.3.5. inter quos nõ eadem
<
lb
/>
ꝓportio reperitur: ſed bene eadē differētia. </
s
>
<
s
xml:id
="
N11A19
"
xml:space
="
preserve
">Uniꝰ
<
lb
/>
em̄ ad .3. eſt ꝓpotio ſubtripla: et triū ad .5. eſt pro-
<
lb
/>
portio ſubſuꝑbipartiēs tertias. </
s
>
<
s
xml:id
="
N11A20
"
xml:space
="
preserve
">Modo ille pro-
<
lb
/>
portiones nõ ſunt ſimiles. </
s
>
<
s
xml:id
="
N11A25
"
xml:space
="
preserve
">Differentia tamen. </
s
>
<
s
xml:id
="
N11A28
"
xml:space
="
preserve
">i ex
<
lb
/>
ceſſus quo ſecūdus numerꝰ excedit primū eſt equa
<
lb
/>
lis differentie qua tertius excedit ſecundum: quia
<
lb
/>
vtra dr̄a eſt binarius. </
s
>
<
s
xml:id
="
N11A31
"
xml:space
="
preserve
">In ꝓpoſito em̄ / hoc eſt in
<
lb
/>
data diffinitione per terminos intelligas nume-
<
lb
/>
ros ſereatim poſitos vel ea que ſe habēt vt nume
<
lb
/>
ri ſereatim poſiti:
<
note
position
="
left
"
xlink:href
="
note-0020-08a
"
xlink:label
="
note-0020-08
"
xml:id
="
N11AAF
"
xml:space
="
preserve
">Differen
<
lb
/>
tia.</
note
>
et ꝑ differētias ītelligas exceſſū
<
lb
/>
quo vnus numerus excedit alterū. </
s
>
<
s
xml:id
="
N11A41
"
xml:space
="
preserve
">Reperies autē /
<
lb
/>
hanc ꝓportionalitatē in naturali ſerie numerorū
<
lb
/>
capiendo .6.7.8. comperies inter illos terminos
<
lb
/>
diuerſas ꝓportiones: quoniã primi ad ſecundum
<
lb
/>
eſt ꝓportio ſubſexquitertia / et ſecundi ad tertiū eſt
<
lb
/>
ꝓportio ſubſexq̇ſeptīa et eſt equalis differētia in-
<
cb
chead
="
Capitulum primū.
"/>
tes illos terminos. </
s
>
<
s
xml:id
="
N11A51
"
xml:space
="
preserve
">Quare in illis terminis repe
<
lb
/>
ritur ꝓportionalitas arithmetica. </
s
>
<
s
xml:id
="
N11A56
"
xml:space
="
preserve
">Sunt enim illi
<
lb
/>
termini continuo proportionabiles arithmetice.
<
lb
/>
<
note
position
="
right
"
xlink:href
="
note-0020-09a
"
xlink:label
="
note-0020-09
"
xml:id
="
N11AB7
">
<
s
xml:id
="
N11ABB
"
xml:space
="
preserve
">Tertimini
<
lb
/>
ↄ̨tinuo ꝓ-
<
lb
/>
portiõa-
<
lb
/>
les ꝓpor
<
lb
/>
tõalitate
<
lb
/>
aritithme
<
lb
/>
tica.
<
lb
/>
</
s
>
<
s
xml:id
="
N11ACB
"
xml:space
="
preserve
">Corrrela
<
lb
/>
riū ſcḋm</
s
>
</
note
>
</
s
>
<
s
xml:id
="
N11A62
"
xml:space
="
preserve
">¶ Unde termini continuo proportionabiles pro-
<
lb
/>
portionalitate arithmetica ſunt illi inter quos cõ-
<
lb
/>
tinuo eſt equalis exceſſus ita ſicut primus exce-
<
lb
/>
dit ſecundum aliquo exceſſu: ita ſecundus excedat
<
lb
/>
tertium equali exceſſu: et tertius quartum / et ſic con
<
lb
/>
ſequenter: vel econtra ſi incipias a minoribus.</
s
>
</
p
>
<
p
xml:id
="
N11AD0
">
<
s
xml:id
="
N11AD1
"
xml:space
="
preserve
">¶ Ex quo elicitur omēs numeros in naturali ſerie
<
lb
/>
numerorum eſſe terminos continuo proportiona
<
lb
/>
biles proportionalitate arithmetica: quoniã con
<
lb
/>
tinuo ſe excedunt equali exceſſu puta vnitate</
s
>
</
p
>
<
note
position
="
right
"
xml:id
="
N11ADA
"
xml:space
="
preserve
">Correla-
<
lb
/>
riū ṫciū.</
note
>
<
p
xml:id
="
N11AE0
">
<
s
xml:id
="
N11AE1
"
xml:space
="
preserve
">¶ Sequitur vlterius proportiones duplam qua-
<
lb
/>
druplam, octuplam, ſexdecuplam, trigecuplam
<
lb
/>
ſecundam / et ſic conſequenter aſcēdendo per nume
<
lb
/>
ros pariter pares: eſſe terminos continuo propor
<
lb
/>
tionabiles arithmetice. </
s
>
<
s
xml:id
="
N11AEC
"
xml:space
="
preserve
">quoniã continuo ille pro-
<
lb
/>
portiones ſe excedūt per equalem proportionem:
<
lb
/>
puta duplam </
s
>
<
s
xml:id
="
N11AF3
"
xml:space
="
preserve
">Nam quadrupla excedit duplã per
<
lb
/>
duplam: et octupla excedit quadruplam etiam per
<
lb
/>
duplam: et ſimiliter ſexdecupla excedit octuplam
<
lb
/>
per duplã: igitur ille proportiones continuo ſūt
<
lb
/>
proportionabiles arithmetice. </
s
>
<
s
xml:id
="
N11AFE
"
xml:space
="
preserve
">Antecedens patet /
<
lb
/>
quia addendo duplam ſupraduplã efficitur qua-
<
lb
/>
drupla: et addendo duplam ſupraquadruplã effi
<
lb
/>
citur octupla: et ſic conſequenter. </
s
>
<
s
xml:id
="
N11B07
"
xml:space
="
preserve
">Et ille proporti-
<
lb
/>
ones continuo per illa additamenta ſe excedūt: et
<
lb
/>
illa additamenta cõtinuo ſunt proportiones du-
<
lb
/>
ple / igitur cõtinuo ſe excedunt per proportionem
<
lb
/>
dulam: quod fuit probandum. </
s
>
<
s
xml:id
="
N11B12
"
xml:space
="
preserve
">Huius medietatis
<
lb
/>
proprietates in ſequenti capite patebunt.
<
note
position
="
right
"
xlink:href
="
note-0020-10a
"
xlink:label
="
note-0020-10
"
xml:id
="
N11B6D
"
xml:space
="
preserve
">Geome-
<
lb
/>
trica me-
<
lb
/>
dietas.</
note
>
</
s
>
<
s
xml:id
="
N11B1C
"
xml:space
="
preserve
">
<
gap
/>
Geo-
<
lb
/>
metrica autem medietas ſiue ꝓportionalitas eſt
<
lb
/>
quotienſcun tribus diſpoſitis terminis: aut plu
<
lb
/>
ribus inter eos eedem proportiones reperiuntur
<
lb
/>
eedeꝫ vero differētie nequā. </
s
>
<
s
xml:id
="
N11B28
"
xml:space
="
preserve
">Et per eaſdē ꝓpor-
<
lb
/>
tiones in propoſitio ītelligas proportiones equa
<
lb
/>
les. </
s
>
<
s
xml:id
="
N11B2F
"
xml:space
="
preserve
">Et per equales proportiones intelligas pro-
<
lb
/>
portiones eiuſdem denominationis. </
s
>
<
s
xml:id
="
N11B34
"
xml:space
="
preserve
">Cuiuſmodi
<
lb
/>
ſunt proportio .4. ad .2. et 12. ad .6. </
s
>
<
s
xml:id
="
N11B39
"
xml:space
="
preserve
">Sunt em̄ eiuſ-
<
lb
/>
dem denominationis: eſt enim vtra illarum du-
<
lb
/>
pla: vt conſtat ex priori parte. </
s
>
<
s
xml:id
="
N11B40
"
xml:space
="
preserve
">Unde omnes duple
<
lb
/>
ſunt equales: oēs ſexquialtere, et oēs ſuprabipar-
<
lb
/>
tientes tertias. </
s
>
<
s
xml:id
="
N11B47
"
xml:space
="
preserve
">Exemplū / huius medietatis in his
<
lb
/>
terminis .2:4.8. reperitur: quoniã qualis eſt pro-
<
lb
/>
portio primi ad ſecūdum talis eſt proportio ſecū
<
lb
/>
di ad tertium: vtrobi enim ſubdupla proportio
<
lb
/>
inuenitur: ſed non ſunt eedem differentie: quoniã
<
lb
/>
tertius terminus ſecundum numero quaternario
<
lb
/>
excedit: ſecūdus vero primum binario dumtaxat
<
lb
/>
<
note
position
="
right
"
xlink:href
="
note-0020-11a
"
xlink:label
="
note-0020-11
"
xml:id
="
N11B77
"
xml:space
="
preserve
">Correla
<
lb
/>
riū q̈rtū.</
note
>
</
s
>
<
s
xml:id
="
N11B5D
"
xml:space
="
preserve
">¶ Educitur ex dictis omnes numeros pariter pa-
<
lb
/>
res cõtinuo geometrice proportionari. </
s
>
<
s
xml:id
="
N11B62
"
xml:space
="
preserve
">Inter eas
<
lb
/>
enim cõtinuo proportio dupla eſt: vt patet in his
<
lb
/>
terminis. 2 4 8 16</
s
>
</
p
>
<
note
position
="
right
"
xml:id
="
N11B7F
"
xml:space
="
preserve
">Correla
<
lb
/>
riū quītã</
note
>
<
p
xml:id
="
N11B85
">
<
s
xml:id
="
N11B86
"
xml:space
="
preserve
">¶ Sequitur ſecundo omnes numeros impares cõ
<
lb
/>
tinuo ſe triplantes incipiendo a ternario conti-
<
lb
/>
nuo proportionari geometrice. </
s
>
<
s
xml:id
="
N11B8D
"
xml:space
="
preserve
">Nam ſi continuo
<
lb
/>
ſe triplant: continuo ſe habent in proportione tri
<
lb
/>
pla: ex quo quilibet ſequens immediate preceden
<
lb
/>
tem ter continet: vt patet in his terminis .3.9.2.7.
<
lb
/>
<
note
position
="
right
"
xlink:href
="
note-0020-12a
"
xlink:label
="
note-0020-12
"
xml:id
="
N11BB7
"
xml:space
="
preserve
">Correla
<
lb
/>
riū ſextã</
note
>
</
s
>
<
s
xml:id
="
N11B9D
"
xml:space
="
preserve
">¶ Elicitur tertio omnes proportiones denomi-
<
lb
/>
natas a numeris pariter paribus relinquendo
<
lb
/>
poſt ſecundum numerum pariter parem vnum nu
<
lb
/>
merum: poſt quartum duos poſt ſeptimum quat
<
lb
/>
tuor: et ſic conſequenter duplando continuo nu-
<
lb
/>
meros intermiſſos: eſſe terminos </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>