20321
THEOR. XIII. PROP. XVIII.
Si per centrum Ellipſis deſcribatur Hyperbole, cuius aſym-
ptoti coniugatis diametris æquidiſtent; ipſa in duobus tantùm
punctis Ellipſis peripheriam ſecabit.
ptoti coniugatis diametris æquidiſtent; ipſa in duobus tantùm
punctis Ellipſis peripheriam ſecabit.
ESto Ellipſis A B C D, cuius centrum E, &
diametri coniugatæ ſint
A C, B D quibus ductæ ſint F G, H C ipſis diametris altera alteri ę-
quidiſtantes, & ſimul occurrentes in G; & cum aſymptotis G F, G H, per
centrum E, deſcripta ſit Hyperbole I E L. Dico hanc, Ellipſis periphe-
riam in duobus tantùm punctis ſecare.
A C, B D quibus ductæ ſint F G, H C ipſis diametris altera alteri ę-
quidiſtantes, & ſimul occurrentes in G; & cum aſymptotis G F, G H, per
centrum E, deſcripta ſit Hyperbole I E L. Dico hanc, Ellipſis periphe-
riam in duobus tantùm punctis ſecare.
Nam cum in Hyperbola I E L
ſumptum ſit punctum E, per
163[Figure 163] quod ductæ ſunt A E C, D E B
aſymptotis æquidiſtantes, ipſæ
in puncto tantùm E ſectioni oc-
current, & Hyperbole in angu-
lo B E A, inter E A, & G F
ſemper incedet, pariterque in
angulo C E D, inter E D, &
G H; ſed anguli B E A, C E D
terminantur à peripherijs B A,
C D, quare Hyperbole ex vtra-
que parte producta ipſas peri-
pherias omninò ſecabit, vt in
I, L. Si ergo ex I ducantur M
I N, O I F diametris æquidiſtã-
tes, ob eandem rationem ſupe-
riùs allatam ſectio E I P, in nullo alio puncto, quàm I cum rectis N I M,
F I O conueniet, ſed ipſæ N I M, F I O nil aliud commune habent
cum peripheria quadrantis A B, quàm idem punctum I, quare
Hyperbole E I P in vno tantùm puncto I Ellipſis periphe-
riam ſecabit in quadrante A B. Cõſimili conſtructione,
& argumento, oſtendetur ſectionem E L Q in
alio puncto quàm L peripheriam D C non
ſecare: quare huiuſmodi Hyperbole in
duobus tantùm punctis ſecat El-
lipſis peripheriam. Quod
erat demonſtrandum.
ſumptum ſit punctum E, per
163[Figure 163] quod ductæ ſunt A E C, D E B
aſymptotis æquidiſtantes, ipſæ
in puncto tantùm E ſectioni oc-
current, & Hyperbole in angu-
lo B E A, inter E A, & G F
ſemper incedet, pariterque in
angulo C E D, inter E D, &
G H; ſed anguli B E A, C E D
terminantur à peripherijs B A,
C D, quare Hyperbole ex vtra-
que parte producta ipſas peri-
pherias omninò ſecabit, vt in
I, L. Si ergo ex I ducantur M
I N, O I F diametris æquidiſtã-
tes, ob eandem rationem ſupe-
riùs allatam ſectio E I P, in nullo alio puncto, quàm I cum rectis N I M,
F I O conueniet, ſed ipſæ N I M, F I O nil aliud commune habent
cum peripheria quadrantis A B, quàm idem punctum I, quare
Hyperbole E I P in vno tantùm puncto I Ellipſis periphe-
riam ſecabit in quadrante A B. Cõſimili conſtructione,
& argumento, oſtendetur ſectionem E L Q in
alio puncto quàm L peripheriam D C non
ſecare: quare huiuſmodi Hyperbole in
duobus tantùm punctis ſecat El-
lipſis peripheriam. Quod
erat demonſtrandum.