Monantheuil, Henri de, Aristotelis Mechanica, 1599
page |< < of 252 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <pb xlink:href="035/01/203.jpg" pagenum="163"/>
              <p type="head">
                <s id="id.002493">COMMENTARIVS. </s>
              </p>
              <p type="main">
                <s id="id.002494">Abſurdum enim.]
                  <emph type="italics"/>
                Repetitio eſt eius, quod problematis ſecun­
                  <lb/>
                di antea iam auxit difficultatem.
                  <emph.end type="italics"/>
                </s>
              </p>
              <p type="main">
                <s id="id.002495">Nonnunquam ferri.]
                  <emph type="italics"/>
                Particula
                  <emph.end type="italics"/>
                  <foreign lang="el">en)i/ote</foreign>
                  <emph type="italics"/>
                nonnunquam indi­
                  <lb/>
                cat ſecundum problema tantum verum eſſe ſpecialiter non in genere,
                  <lb/>
                quod antea eſt demonſtratum.
                  <emph.end type="italics"/>
                </s>
              </p>
              <p type="main">
                <s id="id.002496">Et datorum amborum.]
                  <emph type="italics"/>
                Auget difficultatem problematis
                  <lb/>
                primi. </s>
                <s id="id.002497">Videbatur enim rationi conſentaneum, vt duo totidem moti­
                  <lb/>
                bus mota, & eadem celeritate id eſt æquali tempore idem ſpatium
                  <lb/>
                conficerent.
                  <emph.end type="italics"/>
                </s>
              </p>
              <p type="main">
                <s id="id.002498">Cauſa vero eſt.]
                  <emph type="italics"/>
                Poſtquam problema primum verum eſſe geo­
                  <lb/>
                metrice demonſtratum eſt: nunc huius vtpote admirabilis cauſam
                  <lb/>
                adfert Phyſicam. </s>
                <s id="id.002499">quod ſcilicet mota duobus motibus, ſi ad eundem
                  <lb/>
                terminum, ad quem tendent, celerius mouentur: ſi ad contrarios, tar­
                  <lb/>
                dius. </s>
                <s id="id.002500">Illa enim ſibi inuicem obſequuntur, & vt clauus clauo pellitur:
                  <lb/>
                ita motus motum adiuuat: hæc verò ſibi obſiſtunt, ſeſe impediunt, &
                  <lb/>
                remorantur, & vt magis minuſve contrarij ſunt termini ad quos:
                  <lb/>
                ita quæ ſic mouentur, magis minuſve ſe accelerant, aut retardant.
                  <lb/>
                </s>
                <s id="id.002501">Atqui
                  <emph.end type="italics"/>
                  <foreign lang="el">b</foreign>
                  <emph type="italics"/>
                ab angulo obtuſo motum duorum motuum vno ad
                  <emph.end type="italics"/>
                  <foreign lang="el">a,</foreign>
                  <emph type="italics"/>
                alte­
                  <lb/>
                ro ad
                  <emph.end type="italics"/>
                  <foreign lang="el">d</foreign>
                  <emph type="italics"/>
                tendens ad magis contrarios terminos tendit: quam
                  <emph.end type="italics"/>
                  <foreign lang="el">a</foreign>
                  <emph type="italics"/>
                ten­
                  <lb/>
                dens dictis motibus ad
                  <emph.end type="italics"/>
                  <foreign lang="el">b</foreign>
                  <emph type="italics"/>
                &
                  <emph.end type="italics"/>
                  <foreign lang="el">g. </foreign>
                  <emph type="italics"/>
                Eſt enim, vt antea demonſtratum
                  <lb/>
                eſt,
                  <emph.end type="italics"/>
                  <foreign lang="el">a d</foreign>
                  <emph type="italics"/>
                diameter & recta maior: quam
                  <emph.end type="italics"/>
                  <foreign lang="el">g d. </foreign>
                  <emph type="italics"/>
                Et quò
                  <emph.end type="italics"/>
                  <foreign lang="el">a</foreign>
                  <emph type="italics"/>
                acutior
                  <lb/>
                erit angulus, eò
                  <emph.end type="italics"/>
                  <foreign lang="el">a d</foreign>
                  <emph type="italics"/>
                maior erit ergo æquum eſt, vt
                  <emph.end type="italics"/>
                  <foreign lang="el">b</foreign>
                  <emph type="italics"/>
                tardius fera­
                  <lb/>
                tur: quam
                  <emph.end type="italics"/>
                  <foreign lang="el">a. </foreign>
                  <emph type="italics"/>
                Et quidem tantò tardius: quantò
                  <emph.end type="italics"/>
                  <foreign lang="el">b</foreign>
                  <emph type="italics"/>
                erit obtuſior angu­
                  <lb/>
                lus, &
                  <emph.end type="italics"/>
                  <foreign lang="el">a</foreign>
                  <emph type="italics"/>
                acutior ob cauſam prædictam.
                  <emph.end type="italics"/>
                </s>
              </p>
              <p type="main">
                <s id="id.002502">Fere ad idem.]
                  <emph type="italics"/>
                Particula
                  <emph.end type="italics"/>
                  <foreign lang="el">sxedo\n</foreign>
                  <emph type="italics"/>
                ferè ad­
                  <emph.end type="italics"/>
                  <lb/>
                  <figure id="id.035.01.203.1.jpg" xlink:href="035/01/203/1.jpg" number="76"/>
                  <lb/>
                  <emph type="italics"/>
                iecta indicat non eundem eſſe terminum vtriuſ­
                  <lb/>
                que motionis, qua fertur
                  <emph.end type="italics"/>
                  <foreign lang="el">a</foreign>
                  <emph type="italics"/>
                : ſed duos diuerſos, ve­
                  <lb/>
                rum propiores, quam ſint termini ad quos
                  <emph.end type="italics"/>
                  <foreign lang="el">b</foreign>
                  <lb/>
                  <emph type="italics"/>
                fertur.
                  <emph.end type="italics"/>
                </s>
              </p>
              <p type="main">
                <s id="id.002503">Rectior enim linea.]
                  <emph type="italics"/>
                Id eſt duo latera
                  <emph.end type="italics"/>
                  <foreign lang="el">b a</foreign>
                  <lb/>
                  <emph type="italics"/>
                &
                  <emph.end type="italics"/>
                  <foreign lang="el">b d</foreign>
                  <emph type="italics"/>
                magis accedunt ad rectam vnam, vtpo­
                  <lb/>
                te quia angulus obtuſus ſi augeatur pluſculum,
                  <lb/>
                latera ipſum continentia fient è directo: & tunc
                  <emph.end type="italics"/>
                </s>
              </p>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>