Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 14
[out of range]
>
[Note]
Page: 73
[Note]
Page: 73
[Note]
Page: 73
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 74
[Note]
Page: 75
[Note]
Page: 75
[Note]
Page: 75
[Note]
Page: 75
[Note]
Page: 75
[Note]
Page: 76
[Note]
Page: 76
[Note]
Page: 76
[Note]
Page: 76
[Note]
Page: 76
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 77
[Note]
Page: 77
<
1 - 14
[out of range]
>
page
|<
<
(22)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div587
"
type
="
section
"
level
="
1
"
n
="
238
">
<
pb
o
="
22
"
file
="
0204
"
n
="
204
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div589
"
type
="
section
"
level
="
1
"
n
="
239
">
<
head
xml:id
="
echoid-head247
"
xml:space
="
preserve
">THEOR. XIV. PROP. XIX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5687
"
xml:space
="
preserve
">Si à puncto, quod eſt in angulo aſymptotali, ductæ ſint re-
<
lb
/>
ctæ lineæ aſymptotis æquidiſtantes, & </
s
>
<
s
xml:id
="
echoid-s5688
"
xml:space
="
preserve
">Hyperbolæ occurrentes,
<
lb
/>
atque ex vnius eductarum occurſu agatur recta, quæ ſectionem,
<
lb
/>
vel in ipſo tangens puncto, vel alibi ſecans, producta ſecet
<
lb
/>
quoque eam aſymptoton, cui altera eductarum æqui diſtat; </
s
>
<
s
xml:id
="
echoid-s5689
"
xml:space
="
preserve
">re-
<
lb
/>
cta linea iungens hoc idem punctum cum puncto contactus, vel
<
lb
/>
interſectionis nouiter ductæ lineæ cum Hyperbola, æquidiſtabit
<
lb
/>
rectæ, quę ab occurſu eiuſdem lineæ cum prædicta aſymptoto
<
lb
/>
ad datum punctum educitur.</
s
>
<
s
xml:id
="
echoid-s5690
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
164
">
<
image
file
="
0204-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0204-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s5691
"
xml:space
="
preserve
">SIt Hyperbole A B C, in cuius angulo aſymptotali E D F ſumptum ſit
<
lb
/>
quodlibet punctum G, vel extra Hyperbolen, vt in prima, ſecunda,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s5692
"
xml:space
="
preserve
">tertia; </
s
>
<
s
xml:id
="
echoid-s5693
"
xml:space
="
preserve
">vel intra, vt in quarta, quinta, & </
s
>
<
s
xml:id
="
echoid-s5694
"
xml:space
="
preserve
">ſexta figura, à quo ductæ
<
lb
/>
ſint aſymptotis æquidiſtantes G A, G C, ſectioni occurrentes in A, C;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5695
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5696
"
xml:space
="
preserve
">ex altero occurſuum C ducta ſit quæcunque alia C B E, quæ, vel ſe-
<
lb
/>
ctionem contingat in C, vt in prima, & </
s
>
<
s
xml:id
="
echoid-s5697
"
xml:space
="
preserve
">quarta figura, vel alibi ſecet in
<
lb
/>
B, vt in reliquis, & </
s
>
<
s
xml:id
="
echoid-s5698
"
xml:space
="
preserve
">producta conueniat cum aſymptoto D E, quæ rectæ
<
lb
/>
G A ęquidiſtat. </
s
>
<
s
xml:id
="
echoid-s5699
"
xml:space
="
preserve
">Dico, ſi iungantur A B, E G ipſas inter ſe æquidiſtare.</
s
>
<
s
xml:id
="
echoid-s5700
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5701
"
xml:space
="
preserve
">Nam ducta B H parallela ad F D, productiſque A G, C G vſque ad
<
lb
/>
aſymptotos in F, L; </
s
>
<
s
xml:id
="
echoid-s5702
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5703
"
xml:space
="
preserve
">E B C ad aliam aſymptoton D F in I. </
s
>
<
s
xml:id
="
echoid-s5704
"
xml:space
="
preserve
">Erit iuncta
<
lb
/>
A B iunctæ H F parallela, eſt autem E B æqualis C I; </
s
>
<
s
xml:id
="
echoid-s5705
"
xml:space
="
preserve
">quare, ob
<
note
symbol
="
a
"
position
="
left
"
xlink:label
="
note-0204-01
"
xlink:href
="
note-0204-01a
"
xml:space
="
preserve
">13. h.</
note
>
lelas B H, C L, I D, erit quoque E H æqualis ipſi L D, ſiue ęqualis G F;</
s
>
<
s
xml:id
="
echoid-s5706
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>