DelMonte, Guidubaldo, Mechanicorvm Liber

Table of figures

< >
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
[Figure 151]
[Figure 152]
[Figure 153]
[Figure 154]
[Figure 155]
[Figure 156]
[Figure 157]
[Figure 158]
[Figure 159]
[Figure 160]
< >
page |< < of 288 > >|
    <archimedes>
      <text>
        <body>
          <chap id="N13F6F">
            <pb xlink:href="036/01/200.jpg"/>
            <p id="id.2.1.187.3.0.0.0" type="main">
              <s id="id.2.1.187.3.1.1.0">Et ſi funis in K per alium circumuoluatur
                <lb/>
              orbiculum, cuius centrum ſit N; qui dein­
                <lb/>
              de trochleæ inferiori religetur in O; & po­
                <lb/>
              tentia in M ſuſtineat pondus D. </s>
              <s id="id.2.1.187.3.1.1.0.a">dico pro­
                <lb/>
              portionem potentiæ ad pondus ſeſquiter­
                <lb/>
              tiam eſſe.
                <figure id="id.036.01.200.1.jpg" place="text" xlink:href="036/01/200/1.jpg" number="185"/>
              </s>
            </p>
            <p id="id.2.1.187.4.0.0.0" type="main">
              <s id="id.2.1.187.4.1.1.0">Quoniam enim potentia in E ſuſtinens
                <lb/>
                <arrow.to.target n="note268"/>
              pondus D fune ECB AKPO ſubtripla eſt
                <lb/>
                <arrow.to.target n="note269"/>
              ipſius D, ipſius autem E dupla eſt potentia
                <lb/>
              in H; erit potentia in H ſubſeſquialtera pon
                <lb/>
              deris D. </s>
              <s id="id.2.1.187.4.1.1.0.a">ſimili quoq; modo quoniam po
                <lb/>
              tentia in O, quæ eſt, ac ſi eſſet in centro or
                <lb/>
                <arrow.to.target n="note270"/>
              biculi ABC, ſubtripla eſt ponderis D; ip­
                <lb/>
              ſius autem O dupla eſt potentia in N; erit
                <lb/>
              quoq; potentia in N ſubſeſquialtera ponde­
                <lb/>
              ris D. </s>
              <s id="N158D6">quare duæ ſimul potentiæ in HN pon
                <lb/>
              dus D ſuperant tertia parte, ſe ſe habentq; ad
                <lb/>
              D in ratione ſeſquitertia: & cùm potentia
                <lb/>
              in M duabus ſit potentiis in HN ſimul ſum
                <lb/>
              ptis æqualis, ſuperabit itidem potentia in
                <lb/>
              M pondus D tertia parte. </s>
              <s id="id.2.1.187.4.1.2.0">ergo proportio
                <lb/>
              potentiæ in M ad pondus D ſeſquitertia
                <lb/>
              eſt. </s>
              <s id="id.2.1.187.4.1.3.0">quod demonſtrare oportebat. </s>
            </p>
            <p id="id.2.1.188.1.0.0.0" type="margin">
              <s id="id.2.1.188.1.1.1.0">
                <margin.target id="note268"/>
              5
                <emph type="italics"/>
              Huius.
                <emph.end type="italics"/>
              </s>
              <s id="id.2.1.188.1.1.2.0">
                <margin.target id="note269"/>
                <emph type="italics"/>
              Ex
                <emph.end type="italics"/>
              15
                <emph type="italics"/>
              huius.
                <emph.end type="italics"/>
              </s>
              <s id="id.2.1.188.1.1.3.0">
                <margin.target id="note270"/>
              3, 15,
                <emph type="italics"/>
              Huius.
                <emph.end type="italics"/>
              </s>
            </p>
            <p id="id.2.1.189.1.0.0.0" type="main">
              <s id="id.2.1.189.1.1.1.0">Si autem in M ſit potentia mouens pon­
                <lb/>
              dus, ſimili modo oſtendetur ſpatium ponderis D ſpatii potentiæ in
                <lb/>
              M ſeſquitertium eſſe. </s>
            </p>
            <p id="id.2.1.189.2.0.0.0" type="main">
              <s id="id.2.1.189.2.1.1.0">Et ſi funis in O per alium circumuoluatur orbiculum, qui tro­
                <lb/>
              chleæ ſuperiori deinde religetur; eodem modo demonſtrabimus
                <lb/>
              proportionem potentiæ in M pondus ſuſtinentis ad pondus ſeſ­
                <lb/>
              quiquartam eſſe. </s>
              <s id="id.2.1.189.2.1.2.0">& ſi in M ſit potentia mouens, ſimiliter oſten­
                <lb/>
              detur ſpatium ponderis ſpatii potentiæ ſeſquiquartum eſſe. </s>
              <s id="id.2.1.189.2.1.3.0">pro­
                <lb/>
              cedendoq; hoc modo in infinitum quamcunq; proportionem
                <lb/>
              potentiæ ad pondus ſuperparticularem inueniemus; ſemper〈qué〉 </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>