Commandino, Federico, Liber de centro gravitatis solidorum, 1565

Table of figures

< >
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
< >
page |< < of 101 > >|
1 Itaque quoniam duæ lineæ Kl, lm ſe ſe tangentes, duabus
lineis ſe ſe tangentibus ab, bc æquidiſtant; nec ſunt in e
dem plano: angulus klm æqualis eſt angulo abc: & ita an

gulus lmk, angulo bca, & mkl ipſi cab æqualis probabi
tur.
triangulum ergo klm eſt æquale, & ſimile triangulo
abc. quare & triangulo def.
Ducatur linea cgo, & per ip
ſam, & per cf ducatur planum ſecans priſma; cuius & paral
lelogrammi ae communis ſectio ſit opq.
tranſibit linea
fq per h, & mp per n.
nam cum plana æquidiſtantia ſecen
tur à plano cq, communes eorum ſectiones cgo, mp, fq
ſibi ipſis æquidiſtabunt.
Sed & æquidiſtant ab, kl, de. an­

guli ergo aoc, kpm, dqf inter ſe æquales ſunt: & ſunt
æquales qui ad puncta akd conſtituuntur.
quare & reliqui
reliquis æquales; & triangula aco, Kmp, dfq inter ſe ſimi

lia erunt.
Vt igitur ca ad ao, ita fd ad dq: & permutando
ut ca ad fd, ita ao ad dq.
eſt autem ca æqualis fd. ergo &
ao ipſi dq.
eadem quoque ratione & ao ipſi Kp æqualis
demonſtrabitur.
Itaque ſi triangula, abc, def æqualia &
15[Figure 15]
ſimilia inter ſe aptentur,
cadet linea fq in lineam

cgo.
Sed & centrum gra
uitatis h in g centrum ca­
det.
tranſibit igitur linea
fq per h: & planum per
co & cf ductum per axem
gh ducetur: idcircoque li
neam mp etiam per n tran
ſire neceſſe erit.
Quo­
niam ergo fh, cg æqua­
les ſunt, & æquidiſtantes:
itemque hq, go; rectæ li­
neæ, quæ ipſas connectunt
cmf, gnh, opq æqua­
les æquidiſtantes erunt.

Text layer

  • Dictionary
  • Places

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index