Barrow, Isaac
,
Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 40
[out of range]
>
<
1 - 30
31 - 40
[out of range]
>
page
|<
<
(28)
of 393
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div220
"
type
="
section
"
level
="
1
"
n
="
30
">
<
p
>
<
s
xml:id
="
echoid-s8954
"
xml:space
="
preserve
">
<
pb
o
="
28
"
file
="
0206
"
n
="
221
"
rhead
="
"/>
diverſitatem alterius diverſitas ritè conſequatur accommodeturque.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8955
"
xml:space
="
preserve
">U
<
unsure
/>
t e. </
s
>
<
s
xml:id
="
echoid-s8956
"
xml:space
="
preserve
">g. </
s
>
<
s
xml:id
="
echoid-s8957
"
xml:space
="
preserve
">ſi recta ZA ſemper per rectam AY ſibi parallela feratur
<
lb
/>
motu quolibet uniformi, vel difformi (creſcente, vel decreſcente
<
lb
/>
vel alternante ſecundum velocitatem, juxta rationem quamvis ima-
<
lb
/>
ginabilem) et in ea punctum aliquod M deferatur, ità tamen ut
<
lb
/>
puncti motus lineæ rectæ motibus per ſingulas quasque temporis
<
lb
/>
partes eaſdem proportionentur, producetur utique linea recta. </
s
>
<
s
xml:id
="
echoid-s8958
"
xml:space
="
preserve
">Nem-
<
lb
/>
pe ſi fuerit ſemper AB. </
s
>
<
s
xml:id
="
echoid-s8959
"
xml:space
="
preserve
">AC:</
s
>
<
s
xml:id
="
echoid-s8960
"
xml:space
="
preserve
">: BM. </
s
>
<
s
xml:id
="
echoid-s8961
"
xml:space
="
preserve
">Cμ. </
s
>
<
s
xml:id
="
echoid-s8962
"
xml:space
="
preserve
">vell
<
unsure
/>
AB, MX:</
s
>
<
s
xml:id
="
echoid-s8963
"
xml:space
="
preserve
">: AM,
<
lb
/>
X μ (poſitâ ſcilicet MX ad AC parallelâ) liquet puncta A, M
<
lb
/>
μ in una recta verſari. </
s
>
<
s
xml:id
="
echoid-s8964
"
xml:space
="
preserve
">Eſt enim rectæ lineæ proprietas in Ele-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0206-01
"
xlink:href
="
note-0206-01a
"
xml:space
="
preserve
">Fig. 17.</
note
>
mento VI. </
s
>
<
s
xml:id
="
echoid-s8965
"
xml:space
="
preserve
">demonſtrata, quòd ad eam parallelωs applicatæ rectæ
<
lb
/>
lineæ ſuis ad deſignatum in ea punctum diſtantiis proportionales in
<
lb
/>
rectam lineam terminantur. </
s
>
<
s
xml:id
="
echoid-s8966
"
xml:space
="
preserve
">Quòd ſi motus hi ſic inter ſe contem-
<
lb
/>
perentur, ut aſſumptâ quâdam lineâ D habeat rectangulum ex diffe-
<
lb
/>
rentia lineæ D, & </
s
>
<
s
xml:id
="
echoid-s8967
"
xml:space
="
preserve
">ipſius BM (à puncto mobili decurſæ in recta
<
lb
/>
AZ) & </
s
>
<
s
xml:id
="
echoid-s8968
"
xml:space
="
preserve
">ipſa BM ad quadratum ex AB (eodem tempore decurſa
<
lb
/>
à linea AZ) rationem ſemper eandem progignetur _ellipſis aut cir-_
<
lb
/>
_culus;_ </
s
>
<
s
xml:id
="
echoid-s8969
"
xml:space
="
preserve
">circulus quidem ſi ratio propoſita fuerit æqualitas, & </
s
>
<
s
xml:id
="
echoid-s8970
"
xml:space
="
preserve
">an-
<
lb
/>
gulus ZAY rectus, _ellipſis_ ſi ſecùs; </
s
>
<
s
xml:id
="
echoid-s8971
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s8972
"
xml:space
="
preserve
">in his erit D una _diame-_
<
lb
/>
_trorum_, ſitum habens in linea AZ primò poſitâ, à vertice A por-
<
lb
/>
recta verſus partes Z. </
s
>
<
s
xml:id
="
echoid-s8973
"
xml:space
="
preserve
">Sin ità ſe habeant, ut rectangulum ex ſumma
<
lb
/>
linearum D, & </
s
>
<
s
xml:id
="
echoid-s8974
"
xml:space
="
preserve
">BM & </
s
>
<
s
xml:id
="
echoid-s8975
"
xml:space
="
preserve
">ipſa BM ſemper eandem cum quadrato
<
lb
/>
e
<
unsure
/>
x AB proportionem ſervet, eo compoſito motu procreabitur _by-_
<
lb
/>
_perbole_; </
s
>
<
s
xml:id
="
echoid-s8976
"
xml:space
="
preserve
">quadrata quidem illa (vel æquilatera rectangula) ſi _ratio_
<
lb
/>
deſignata fuerit æqualitatis, & </
s
>
<
s
xml:id
="
echoid-s8977
"
xml:space
="
preserve
">angulus ZAY rectus; </
s
>
<
s
xml:id
="
echoid-s8978
"
xml:space
="
preserve
">ſin aliter,
<
lb
/>
alterius, pro rationis aſſignatæ quantitate, ſpeciei; </
s
>
<
s
xml:id
="
echoid-s8979
"
xml:space
="
preserve
">cujus _tranſverſa_
<
lb
/>
_diameter_ æquabitur ipſi D, ſitum habens in ZA primò poſita à
<
lb
/>
vertice A protenſa verſus partes averſas ab Z; </
s
>
<
s
xml:id
="
echoid-s8980
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s8981
"
xml:space
="
preserve
">parameter ex
<
lb
/>
ratione data determinatur. </
s
>
<
s
xml:id
="
echoid-s8982
"
xml:space
="
preserve
">Quòd ſi perpetuò rectangulum ex ipſa
<
lb
/>
D, & </
s
>
<
s
xml:id
="
echoid-s8983
"
xml:space
="
preserve
">decurſa BM ad quadratum ex AB eandem perpetuò ra-
<
lb
/>
tionem obtinet, conſtabit effici _lineam parabolicam_, cujus _para-_
<
lb
/>
_meter_ ex rectæ D, datæque rationis propoſitæ quantitate facilè
<
lb
/>
definietur. </
s
>
<
s
xml:id
="
echoid-s8984
"
xml:space
="
preserve
">Et in horum primo quidem caſu ſi motus tranſverſus
<
lb
/>
per AY ponatur uniformis, etiam motus deſcendens per AZ unifor-
<
lb
/>
mis erit; </
s
>
<
s
xml:id
="
echoid-s8985
"
xml:space
="
preserve
">in ſecundo & </
s
>
<
s
xml:id
="
echoid-s8986
"
xml:space
="
preserve
">tertio ſi motus per AY ſit uniformis, erit motus
<
lb
/>
deſcendens perpetuò creſcens; </
s
>
<
s
xml:id
="
echoid-s8987
"
xml:space
="
preserve
">eodemque poſito quoad ultimum caſum,
<
lb
/>
in quo parabola fit; </
s
>
<
s
xml:id
="
echoid-s8988
"
xml:space
="
preserve
">punctum M continuò velocitate creſcet æqualiter.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8989
"
xml:space
="
preserve
">Nec abſimili modo quævis alia linea tali motûs compoſitione producta
<
lb
/>
concipi poteſt. </
s
>
<
s
xml:id
="
echoid-s8990
"
xml:space
="
preserve
">Sed ut eò quo tendimus aliquando perveniamus; </
s
>
<
s
xml:id
="
echoid-s8991
"
xml:space
="
preserve
">
<
lb
/>
agedum videamus ecquid in _rem Mathematicam_ utilitatis ex </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>