Barrow, Isaac
,
Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 112
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 112
[out of range]
>
page
|<
<
(35)
of 393
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div222
"
type
="
section
"
level
="
1
"
n
="
31
">
<
p
>
<
s
xml:id
="
echoid-s9185
"
xml:space
="
preserve
">
<
pb
o
="
35
"
file
="
0213
"
n
="
228
"
rhead
="
"/>
compoſitam è rationibus applicatarum ab iſtis punctis ad rectam AZ
<
lb
/>
(ipſi ſcilicet AY parallelarum) & </
s
>
<
s
xml:id
="
echoid-s9186
"
xml:space
="
preserve
">interceptarum à tangentibus ad iſta
<
lb
/>
puncta ac dictis applicatis (vel, rationem velocitatum æquari rationi
<
lb
/>
applicatarum ex interceptarum ratione ſubductæ.)</
s
>
<
s
xml:id
="
echoid-s9187
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s9188
"
xml:space
="
preserve
">Nempe ſi duæ rectæ MT, NX curvam tangent ad puncta M, N;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s9189
"
xml:space
="
preserve
">protractæ ZA occurrentes in T, X; </
s
>
<
s
xml:id
="
echoid-s9190
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s9191
"
xml:space
="
preserve
">applicentur NP, NQ ad
<
lb
/>
YA parallelæ, velocitatum ad puncta, M, N proportio componetur
<
lb
/>
è proportione ipſius TP ad PM, & </
s
>
<
s
xml:id
="
echoid-s9192
"
xml:space
="
preserve
">ipſius QN ad QX. </
s
>
<
s
xml:id
="
echoid-s9193
"
xml:space
="
preserve
">Nam
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0213-01
"
xlink:href
="
note-0213-01a
"
xml:space
="
preserve
">Fig. 21.</
note
>
velocitas in M ad velocitatem uniformem per AY ſe habet ut TP ad
<
lb
/>
PM; </
s
>
<
s
xml:id
="
echoid-s9194
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s9195
"
xml:space
="
preserve
">velocitas iſta uniformis ſe habet ad velocitatem in N, ut
<
lb
/>
QN ad QX. </
s
>
<
s
xml:id
="
echoid-s9196
"
xml:space
="
preserve
">Ergo velocitas in M ad velocitatem in N ex his
<
lb
/>
duabus rationibus PP ad PM, & </
s
>
<
s
xml:id
="
echoid-s9197
"
xml:space
="
preserve
">QN ad QX componetur Notetur à
<
lb
/>
concurſu tangentium ductâ FE ad AY parallelâ; </
s
>
<
s
xml:id
="
echoid-s9198
"
xml:space
="
preserve
">fore TE, XE
<
lb
/>
= TP. </
s
>
<
s
xml:id
="
echoid-s9199
"
xml:space
="
preserve
">PM + QN. </
s
>
<
s
xml:id
="
echoid-s9200
"
xml:space
="
preserve
">QX.</
s
>
<
s
xml:id
="
echoid-s9201
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s9202
"
xml:space
="
preserve
">XV. </
s
>
<
s
xml:id
="
echoid-s9203
"
xml:space
="
preserve
">Obiter interjicio generalem hinc & </
s
>
<
s
xml:id
="
echoid-s9204
"
xml:space
="
preserve
">bene facilem conſequi
<
lb
/>
_Problematis iſtius ſolutionem_, quam tanti fecit, & </
s
>
<
s
xml:id
="
echoid-s9205
"
xml:space
="
preserve
">cui tantum laborem
<
lb
/>
impendit G_alilæus_, quámque _Torricellius_ pronunciat eum quàm optimè
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s9206
"
xml:space
="
preserve
">ingenioſiſſimè reperiſſe. </
s
>
<
s
xml:id
="
echoid-s9207
"
xml:space
="
preserve
">Rem ità proponit _Torricellius_ (nam ipſe
<
lb
/>
_Galilæus_ ad manum non eſt) propoſitâ quâvis _parabolâ_, cujus
<
lb
/>
_vertex_ A oportet punctum aliquod ſublime reperire; </
s
>
<
s
xml:id
="
echoid-s9208
"
xml:space
="
preserve
">è quo ſi grave
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0213-02
"
xlink:href
="
note-0213-02a
"
xml:space
="
preserve
">Fig. 22.</
note
>
cadat uſque ad A, & </
s
>
<
s
xml:id
="
echoid-s9209
"
xml:space
="
preserve
">ex puncto cum impetu jam concepto horizonta-
<
lb
/>
liter convertatur, ipſa _propoſitam parabolam_ deſcribat (notetur, quod
<
lb
/>
motus deſcenſivus parabolam deſcribens non è puncto ſublimi, ſed ab
<
lb
/>
ipſo puncto A cenſetur inchoare.) </
s
>
<
s
xml:id
="
echoid-s9210
"
xml:space
="
preserve
">Huc recidit _Problema, @ alilæi_ ſup-
<
lb
/>
poſitis inſiſtendo, ut determinentur particulares velocitates motuum,
<
lb
/>
uniformis horizontalis, ſeu tranſverſi, & </
s
>
<
s
xml:id
="
echoid-s9211
"
xml:space
="
preserve
">æqualiter creſcentis deſcen-
<
lb
/>
ſivi quorum è compoſitione deſcripta concipitur exhibita parabola.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s9212
"
xml:space
="
preserve
">Nos illud, quæcunque ſit creſcentis deſcenſivi motûs ratio, quicunque
<
lb
/>
modus, generaliter exequemur; </
s
>
<
s
xml:id
="
echoid-s9213
"
xml:space
="
preserve
">ſpecialem illum de _parobola_ caſum in
<
lb
/>
exemplum ſubjuncturi.</
s
>
<
s
xml:id
="
echoid-s9214
"
xml:space
="
preserve
">‖ Reperiatur in recta AZ (quæ ſanè curvæ
<
lb
/>
diameter eſt) punctum aliquod, ut P, à quo ſi ordinatim applicetur
<
lb
/>
PM, & </
s
>
<
s
xml:id
="
echoid-s9215
"
xml:space
="
preserve
">ducatur tangens MT, rectæ AZ occurrens in T, ſit in-
<
lb
/>
tercepta TP æqualis ipſi PM; </
s
>
<
s
xml:id
="
echoid-s9216
"
xml:space
="
preserve
">tum ſumatur in ZA protractâ recta
<
lb
/>
AS = AP. </
s
>
<
s
xml:id
="
echoid-s9217
"
xml:space
="
preserve
">Dico factum.</
s
>
<
s
xml:id
="
echoid-s9218
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s9219
"
xml:space
="
preserve
">Nam quoniam SA = AP, concipiet mobile deſcendens ab S in
<
lb
/>
A tantum impetum, quantum ab A ad P curvam deſcribendo (ponitur
<
lb
/>
enim increſcentis velocitatis motus utrobique prorſus idem) iſte verò
<
lb
/>
impetus æquatur impetui, quo mobile à T deſcendens uniformi motu
<
lb
/>
percurret rectam TP, eodem tempore quo recta AZ </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>