Barrow, Isaac, Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur

Table of contents

< >
< >
page |< < (35) of 393 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div222" type="section" level="1" n="31">
          <p>
            <s xml:id="echoid-s9185" xml:space="preserve">
              <pb o="35" file="0213" n="228" rhead=""/>
            compoſitam è rationibus applicatarum ab iſtis punctis ad rectam AZ
              <lb/>
            (ipſi ſcilicet AY parallelarum) & </s>
            <s xml:id="echoid-s9186" xml:space="preserve">interceptarum à tangentibus ad iſta
              <lb/>
            puncta ac dictis applicatis (vel, rationem velocitatum æquari rationi
              <lb/>
            applicatarum ex interceptarum ratione ſubductæ.)</s>
            <s xml:id="echoid-s9187" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9188" xml:space="preserve">Nempe ſi duæ rectæ MT, NX curvam tangent ad puncta M, N;
              <lb/>
            </s>
            <s xml:id="echoid-s9189" xml:space="preserve">protractæ ZA occurrentes in T, X; </s>
            <s xml:id="echoid-s9190" xml:space="preserve">& </s>
            <s xml:id="echoid-s9191" xml:space="preserve">applicentur NP, NQ ad
              <lb/>
            YA parallelæ, velocitatum ad puncta, M, N proportio componetur
              <lb/>
            è proportione ipſius TP ad PM, & </s>
            <s xml:id="echoid-s9192" xml:space="preserve">ipſius QN ad QX. </s>
            <s xml:id="echoid-s9193" xml:space="preserve">Nam
              <lb/>
              <note position="right" xlink:label="note-0213-01" xlink:href="note-0213-01a" xml:space="preserve">Fig. 21.</note>
            velocitas in M ad velocitatem uniformem per AY ſe habet ut TP ad
              <lb/>
            PM; </s>
            <s xml:id="echoid-s9194" xml:space="preserve">& </s>
            <s xml:id="echoid-s9195" xml:space="preserve">velocitas iſta uniformis ſe habet ad velocitatem in N, ut
              <lb/>
            QN ad QX. </s>
            <s xml:id="echoid-s9196" xml:space="preserve">Ergo velocitas in M ad velocitatem in N ex his
              <lb/>
            duabus rationibus PP ad PM, & </s>
            <s xml:id="echoid-s9197" xml:space="preserve">QN ad QX componetur Notetur à
              <lb/>
            concurſu tangentium ductâ FE ad AY parallelâ; </s>
            <s xml:id="echoid-s9198" xml:space="preserve">fore TE, XE
              <lb/>
            = TP. </s>
            <s xml:id="echoid-s9199" xml:space="preserve">PM + QN. </s>
            <s xml:id="echoid-s9200" xml:space="preserve">QX.</s>
            <s xml:id="echoid-s9201" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9202" xml:space="preserve">XV. </s>
            <s xml:id="echoid-s9203" xml:space="preserve">Obiter interjicio generalem hinc & </s>
            <s xml:id="echoid-s9204" xml:space="preserve">bene facilem conſequi
              <lb/>
            _Problematis iſtius ſolutionem_, quam tanti fecit, & </s>
            <s xml:id="echoid-s9205" xml:space="preserve">cui tantum laborem
              <lb/>
            impendit G_alilæus_, quámque _Torricellius_ pronunciat eum quàm optimè
              <lb/>
            & </s>
            <s xml:id="echoid-s9206" xml:space="preserve">ingenioſiſſimè reperiſſe. </s>
            <s xml:id="echoid-s9207" xml:space="preserve">Rem ità proponit _Torricellius_ (nam ipſe
              <lb/>
            _Galilæus_ ad manum non eſt) propoſitâ quâvis _parabolâ_, cujus
              <lb/>
            _vertex_ A oportet punctum aliquod ſublime reperire; </s>
            <s xml:id="echoid-s9208" xml:space="preserve">è quo ſi grave
              <lb/>
              <note position="right" xlink:label="note-0213-02" xlink:href="note-0213-02a" xml:space="preserve">Fig. 22.</note>
            cadat uſque ad A, & </s>
            <s xml:id="echoid-s9209" xml:space="preserve">ex puncto cum impetu jam concepto horizonta-
              <lb/>
            liter convertatur, ipſa _propoſitam parabolam_ deſcribat (notetur, quod
              <lb/>
            motus deſcenſivus parabolam deſcribens non è puncto ſublimi, ſed ab
              <lb/>
            ipſo puncto A cenſetur inchoare.) </s>
            <s xml:id="echoid-s9210" xml:space="preserve">Huc recidit _Problema, @ alilæi_ ſup-
              <lb/>
            poſitis inſiſtendo, ut determinentur particulares velocitates motuum,
              <lb/>
            uniformis horizontalis, ſeu tranſverſi, & </s>
            <s xml:id="echoid-s9211" xml:space="preserve">æqualiter creſcentis deſcen-
              <lb/>
            ſivi quorum è compoſitione deſcripta concipitur exhibita parabola.
              <lb/>
            </s>
            <s xml:id="echoid-s9212" xml:space="preserve">Nos illud, quæcunque ſit creſcentis deſcenſivi motûs ratio, quicunque
              <lb/>
            modus, generaliter exequemur; </s>
            <s xml:id="echoid-s9213" xml:space="preserve">ſpecialem illum de _parobola_ caſum in
              <lb/>
            exemplum ſubjuncturi.</s>
            <s xml:id="echoid-s9214" xml:space="preserve">‖ Reperiatur in recta AZ (quæ ſanè curvæ
              <lb/>
            diameter eſt) punctum aliquod, ut P, à quo ſi ordinatim applicetur
              <lb/>
            PM, & </s>
            <s xml:id="echoid-s9215" xml:space="preserve">ducatur tangens MT, rectæ AZ occurrens in T, ſit in-
              <lb/>
            tercepta TP æqualis ipſi PM; </s>
            <s xml:id="echoid-s9216" xml:space="preserve">tum ſumatur in ZA protractâ recta
              <lb/>
            AS = AP. </s>
            <s xml:id="echoid-s9217" xml:space="preserve">Dico factum.</s>
            <s xml:id="echoid-s9218" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9219" xml:space="preserve">Nam quoniam SA = AP, concipiet mobile deſcendens ab S in
              <lb/>
            A tantum impetum, quantum ab A ad P curvam deſcribendo (ponitur
              <lb/>
            enim increſcentis velocitatis motus utrobique prorſus idem) iſte verò
              <lb/>
            impetus æquatur impetui, quo mobile à T deſcendens uniformi motu
              <lb/>
            percurret rectam TP, eodem tempore quo recta AZ </s>
          </p>
        </div>
      </text>
    </echo>