Barrow, Isaac
,
Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 112
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 112
[out of range]
>
page
|<
<
(37)
of 393
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div222
"
type
="
section
"
level
="
1
"
n
="
31
">
<
pb
o
="
37
"
file
="
0215
"
n
="
230
"
rhead
="
"/>
<
p
>
<
s
xml:id
="
echoid-s9259
"
xml:space
="
preserve
">Ut ſi ad rectam α δ applicetur plana ſuperficies α δ μ, & </
s
>
<
s
xml:id
="
echoid-s9260
"
xml:space
="
preserve
">utcun-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0215-01
"
xlink:href
="
note-0215-01a
"
xml:space
="
preserve
">Fig. 23, 24.</
note
>
que divisâ AD punctis B, C, ſimilitérque dicisâ rectâ α δ punctis
<
lb
/>
<
note
style
="
it
"
position
="
right
"
xlink:label
="
note-0215-02
"
xlink:href
="
note-0215-02a
"
xml:space
="
preserve
">Hæc poſthac
<
lb
/>
γτωμετριηίο
<
lb
/>
τερον demo@-
<
lb
/>
ſtrata haben-
<
lb
/>
tur.</
note
>
que divisâ AD punctis B, C, ſimilitérque dicisâ rectâ α δ punctis
<
lb
/>
β, γ, fuerit ut BM ad CM ità ſuperficies β α μ, ad ſuperficiem
<
lb
/>
γ α μ, & </
s
>
<
s
xml:id
="
echoid-s9261
"
xml:space
="
preserve
">hoc in comparationibus univerſis taliter inſtitutis contingat;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s9262
"
xml:space
="
preserve
">_completo parallelogrammo α δ μ φ, ſe habebit recta_ AP _adrectam_ TP
<
lb
/>
_ut ſuperficies αδ μ adl
<
unsure
/>
parallelogrammum_ α δ μ φ. </
s
>
<
s
xml:id
="
echoid-s9263
"
xml:space
="
preserve
">Et enim ſi recta
<
lb
/>
α δ commune tempus defignare concipiatur, quo recta AD motu
<
lb
/>
æquabili, rectáque DM motu continuè accelerato tranſiguntur,
<
lb
/>
recta δ μ bene deſignabit velocitatem hujus definiti temporis maxi-
<
lb
/>
mam, quam habet punctum deſcendens in curvæ puncto M infimo; </
s
>
<
s
xml:id
="
echoid-s9264
"
xml:space
="
preserve
">
<
lb
/>
hoc eſt velocitatem quâ recta TP uniformiter decurritur eodem tem-
<
lb
/>
pore; </
s
>
<
s
xml:id
="
echoid-s9265
"
xml:space
="
preserve
">quapropter (ut antehac commonſtratum eſt.) </
s
>
<
s
xml:id
="
echoid-s9266
"
xml:space
="
preserve
">_Parallelogram-_
<
lb
/>
_mum_ α δ μ φ optimè _Spatium_ repræſentabit, quod hâc eâdem per-
<
lb
/>
manente velocitate per totum tempus α δ uniformiter deſcribitur,
<
lb
/>
hoc eſt ipſam rectam TP. </
s
>
<
s
xml:id
="
echoid-s9267
"
xml:space
="
preserve
">Cu
<
unsure
/>
m igitur, ex hypotheſis præſtratæ con
<
lb
/>
ditione, figura δ α μ rectam DM, vel AP, repræſentet, erit ut figura
<
lb
/>
δ αμ ad parallelogrammum α δ μ φ, ità AP ad TP; </
s
>
<
s
xml:id
="
echoid-s9268
"
xml:space
="
preserve
">cognitáque
<
lb
/>
proinde modo quovis iſtâ proportione, ſimul hæc innoteſcet; </
s
>
<
s
xml:id
="
echoid-s9269
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s9270
"
xml:space
="
preserve
">re-
<
lb
/>
ciprocè. </
s
>
<
s
xml:id
="
echoid-s9271
"
xml:space
="
preserve
">Exemplo res manifeſtior evadet uno, vel altero. </
s
>
<
s
xml:id
="
echoid-s9272
"
xml:space
="
preserve
">Propoſita
<
lb
/>
curva ſit _parabola quadratica_, ſeu in qua rectæ BM, CM ſe
<
lb
/>
habent, ut quadrata ex AB, AC, hoc eſt ut quadrata ex α β, α γ. </
s
>
<
s
xml:id
="
echoid-s9273
"
xml:space
="
preserve
">
<
lb
/>
Ergò ſi figura α δ μ ſit triangulum, id optimè quadrabit huic negotio. </
s
>
<
s
xml:id
="
echoid-s9274
"
xml:space
="
preserve
">
<
lb
/>
Nam eo ſuppoſito ſemper triangula βαμ, γαμ proportionalia erunt
<
lb
/>
quadratis ex α β, αγ, hoc eſt rectis BM; </
s
>
<
s
xml:id
="
echoid-s9275
"
xml:space
="
preserve
">CM. </
s
>
<
s
xml:id
="
echoid-s9276
"
xml:space
="
preserve
">Quoniam verò
<
lb
/>
triangulum δ α μ parallelogrammi δ α φ μ eſt ſubduplum, erit
<
lb
/>
recta AP quoque rectæ TP ſubdupla; </
s
>
<
s
xml:id
="
echoid-s9277
"
xml:space
="
preserve
">quod ità ſe habere demon-
<
lb
/>
ſtratum habetur in _conicis elementis_, & </
s
>
<
s
xml:id
="
echoid-s9278
"
xml:space
="
preserve
">paſſim agnoſcitur. </
s
>
<
s
xml:id
="
echoid-s9279
"
xml:space
="
preserve
">Sit rurſus
<
lb
/>
curva AMM _parabola cubica_; </
s
>
<
s
xml:id
="
echoid-s9280
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s9281
"
xml:space
="
preserve
">quoniam in ea rectæ BM, CM
<
lb
/>
ſe habent ut cubi rectarum AB, AC, hoc eſt ut cubi rectarum α β,
<
lb
/>
α γ; </
s
>
<
s
xml:id
="
echoid-s9282
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s9283
"
xml:space
="
preserve
">ſi _ſuperficies α δ μ fuerit complementum ſemiparabolicæ qua-_
<
lb
/>
_draticæ portionis, trilinea α β μ, α γ μ cubis ex α β, α γ proportionalia_
<
lb
/>
_erunt_ (ut à _Pappo_, ac aliis oſtenditur, & </
s
>
<
s
xml:id
="
echoid-s9284
"
xml:space
="
preserve
">ex _Archimidea parabolæ_
<
lb
/>
_dimenſione_ quàm facillimè deducitur) itaque negotio propoſito quàm
<
lb
/>
rectiſſimè adaptetur _parabola quadratica_; </
s
>
<
s
xml:id
="
echoid-s9285
"
xml:space
="
preserve
">cúmque conſtiterit ali-
<
lb
/>
undè tum figuram α δ μ ſubtriplam fore parallelogrammi α δ μ φ; </
s
>
<
s
xml:id
="
echoid-s9286
"
xml:space
="
preserve
">
<
lb
/>
erit etiam juxta regulæ jam aſſignatæ præſcriptum recta AP quoque
<
lb
/>
ſubtripla rectæ TP. </
s
>
<
s
xml:id
="
echoid-s9287
"
xml:space
="
preserve
">De qua concluſione ſatis convenit inter _Geo-_
<
lb
/>
_metras_.</
s
>
<
s
xml:id
="
echoid-s9288
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>