Barrow, Isaac, Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur

Table of contents

< >
< >
page |< < (37) of 393 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div222" type="section" level="1" n="31">
          <pb o="37" file="0215" n="230" rhead=""/>
          <p>
            <s xml:id="echoid-s9259" xml:space="preserve">Ut ſi ad rectam α δ applicetur plana ſuperficies α δ μ, & </s>
            <s xml:id="echoid-s9260" xml:space="preserve">utcun-
              <lb/>
              <note position="right" xlink:label="note-0215-01" xlink:href="note-0215-01a" xml:space="preserve">Fig. 23, 24.</note>
            que divisâ AD punctis B, C, ſimilitérque dicisâ rectâ α δ punctis
              <lb/>
              <note style="it" position="right" xlink:label="note-0215-02" xlink:href="note-0215-02a" xml:space="preserve">Hæc poſthac
                <lb/>
              γτωμετριηίο
                <lb/>
              τερον demo@-
                <lb/>
              ſtrata haben-
                <lb/>
              tur.</note>
            que divisâ AD punctis B, C, ſimilitérque dicisâ rectâ α δ punctis
              <lb/>
            β, γ, fuerit ut BM ad CM ità ſuperficies β α μ, ad ſuperficiem
              <lb/>
            γ α μ, & </s>
            <s xml:id="echoid-s9261" xml:space="preserve">hoc in comparationibus univerſis taliter inſtitutis contingat;
              <lb/>
            </s>
            <s xml:id="echoid-s9262" xml:space="preserve">_completo parallelogrammo α δ μ φ, ſe habebit recta_ AP _adrectam_ TP
              <lb/>
            _ut ſuperficies αδ μ adl
              <unsure/>
            parallelogrammum_ α δ μ φ. </s>
            <s xml:id="echoid-s9263" xml:space="preserve">Et enim ſi recta
              <lb/>
            α δ commune tempus defignare concipiatur, quo recta AD motu
              <lb/>
            æquabili, rectáque DM motu continuè accelerato tranſiguntur,
              <lb/>
            recta δ μ bene deſignabit velocitatem hujus definiti temporis maxi-
              <lb/>
            mam, quam habet punctum deſcendens in curvæ puncto M infimo; </s>
            <s xml:id="echoid-s9264" xml:space="preserve">
              <lb/>
            hoc eſt velocitatem quâ recta TP uniformiter decurritur eodem tem-
              <lb/>
            pore; </s>
            <s xml:id="echoid-s9265" xml:space="preserve">quapropter (ut antehac commonſtratum eſt.) </s>
            <s xml:id="echoid-s9266" xml:space="preserve">_Parallelogram-_
              <lb/>
            _mum_ α δ μ φ optimè _Spatium_ repræſentabit, quod hâc eâdem per-
              <lb/>
            manente velocitate per totum tempus α δ uniformiter deſcribitur,
              <lb/>
            hoc eſt ipſam rectam TP. </s>
            <s xml:id="echoid-s9267" xml:space="preserve">Cu
              <unsure/>
            m igitur, ex hypotheſis præſtratæ con
              <lb/>
            ditione, figura δ α μ rectam DM, vel AP, repræſentet, erit ut figura
              <lb/>
            δ αμ ad parallelogrammum α δ μ φ, ità AP ad TP; </s>
            <s xml:id="echoid-s9268" xml:space="preserve">cognitáque
              <lb/>
            proinde modo quovis iſtâ proportione, ſimul hæc innoteſcet; </s>
            <s xml:id="echoid-s9269" xml:space="preserve">& </s>
            <s xml:id="echoid-s9270" xml:space="preserve">re-
              <lb/>
            ciprocè. </s>
            <s xml:id="echoid-s9271" xml:space="preserve">Exemplo res manifeſtior evadet uno, vel altero. </s>
            <s xml:id="echoid-s9272" xml:space="preserve">Propoſita
              <lb/>
            curva ſit _parabola quadratica_, ſeu in qua rectæ BM, CM ſe
              <lb/>
            habent, ut quadrata ex AB, AC, hoc eſt ut quadrata ex α β, α γ. </s>
            <s xml:id="echoid-s9273" xml:space="preserve">
              <lb/>
            Ergò ſi figura α δ μ ſit triangulum, id optimè quadrabit huic negotio. </s>
            <s xml:id="echoid-s9274" xml:space="preserve">
              <lb/>
            Nam eo ſuppoſito ſemper triangula βαμ, γαμ proportionalia erunt
              <lb/>
            quadratis ex α β, αγ, hoc eſt rectis BM; </s>
            <s xml:id="echoid-s9275" xml:space="preserve">CM. </s>
            <s xml:id="echoid-s9276" xml:space="preserve">Quoniam verò
              <lb/>
            triangulum δ α μ parallelogrammi δ α φ μ eſt ſubduplum, erit
              <lb/>
            recta AP quoque rectæ TP ſubdupla; </s>
            <s xml:id="echoid-s9277" xml:space="preserve">quod ità ſe habere demon-
              <lb/>
            ſtratum habetur in _conicis elementis_, & </s>
            <s xml:id="echoid-s9278" xml:space="preserve">paſſim agnoſcitur. </s>
            <s xml:id="echoid-s9279" xml:space="preserve">Sit rurſus
              <lb/>
            curva AMM _parabola cubica_; </s>
            <s xml:id="echoid-s9280" xml:space="preserve">& </s>
            <s xml:id="echoid-s9281" xml:space="preserve">quoniam in ea rectæ BM, CM
              <lb/>
            ſe habent ut cubi rectarum AB, AC, hoc eſt ut cubi rectarum α β,
              <lb/>
            α γ; </s>
            <s xml:id="echoid-s9282" xml:space="preserve">& </s>
            <s xml:id="echoid-s9283" xml:space="preserve">ſi _ſuperficies α δ μ fuerit complementum ſemiparabolicæ qua-_
              <lb/>
            _draticæ portionis, trilinea α β μ, α γ μ cubis ex α β, α γ proportionalia_
              <lb/>
            _erunt_ (ut à _Pappo_, ac aliis oſtenditur, & </s>
            <s xml:id="echoid-s9284" xml:space="preserve">ex _Archimidea parabolæ_
              <lb/>
            _dimenſione_ quàm facillimè deducitur) itaque negotio propoſito quàm
              <lb/>
            rectiſſimè adaptetur _parabola quadratica_; </s>
            <s xml:id="echoid-s9285" xml:space="preserve">cúmque conſtiterit ali-
              <lb/>
            undè tum figuram α δ μ ſubtriplam fore parallelogrammi α δ μ φ; </s>
            <s xml:id="echoid-s9286" xml:space="preserve">
              <lb/>
            erit etiam juxta regulæ jam aſſignatæ præſcriptum recta AP quoque
              <lb/>
            ſubtripla rectæ TP. </s>
            <s xml:id="echoid-s9287" xml:space="preserve">De qua concluſione ſatis convenit inter _Geo-_
              <lb/>
            _metras_.</s>
            <s xml:id="echoid-s9288" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>