Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(48)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div671
"
type
="
section
"
level
="
1
"
n
="
267
">
<
pb
o
="
48
"
file
="
0230
"
n
="
230
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div673
"
type
="
section
"
level
="
1
"
n
="
268
">
<
head
xml:id
="
echoid-head277
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6429
"
xml:space
="
preserve
">EX hac facilè elicietur methodus, qua precipuas quorumlibet Acumi-
<
lb
/>
natorum paſſiones oſtendi poſſint, nempe: </
s
>
<
s
xml:id
="
echoid-s6430
"
xml:space
="
preserve
">ipſa Acuminata à diame-
<
lb
/>
tris bifariam ſecari: </
s
>
<
s
xml:id
="
echoid-s6431
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6432
"
xml:space
="
preserve
">Proportionalia Acuminata ęqualium altitudinum
<
lb
/>
inter ſe eſſe vt baſes: </
s
>
<
s
xml:id
="
echoid-s6433
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6434
"
xml:space
="
preserve
">(tanquam Corollarium) Acuminata proportio-
<
lb
/>
nalia æqualium baſium eſſe inter ſe vt altitudines: </
s
>
<
s
xml:id
="
echoid-s6435
"
xml:space
="
preserve
">item duo quæcunque
<
lb
/>
Acuminata proportionalia habere inter ſe rationem compoſitam ex ratio-
<
lb
/>
ne baſium, & </
s
>
<
s
xml:id
="
echoid-s6436
"
xml:space
="
preserve
">ex ratione altitudinum: </
s
>
<
s
xml:id
="
echoid-s6437
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6438
"
xml:space
="
preserve
">ad inſcripta triangula, vel cir-
<
lb
/>
cumſcripta parallelogramma eandem retinere rationem, aliaque his ſimi-
<
lb
/>
lia: </
s
>
<
s
xml:id
="
echoid-s6439
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6440
"
xml:space
="
preserve
">quod de proportionalibus Acuminatis, idem penitus euenire de ſi-
<
lb
/>
milibus menſalibus proportionalium Acuminatorum, præmiſſa priùs ha-
<
lb
/>
rum menſalium definitione, &</
s
>
<
s
xml:id
="
echoid-s6441
"
xml:space
="
preserve
">c. </
s
>
<
s
xml:id
="
echoid-s6442
"
xml:space
="
preserve
">quæ omnia infinitas figurarum ſpecies
<
lb
/>
<
gap
/>
, ne dum hactenus tractatis Parabolis, Hyperbolis, &</
s
>
<
s
xml:id
="
echoid-s6443
"
xml:space
="
preserve
">c. </
s
>
<
s
xml:id
="
echoid-s6444
"
xml:space
="
preserve
">maximè con-
<
lb
/>
ducunt. </
s
>
<
s
xml:id
="
echoid-s6445
"
xml:space
="
preserve
">Sed hæc aliàs, quę tamen cum ſint haud obſcurę indagationis,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s6446
"
xml:space
="
preserve
">huic noſtro inſtituto prorſus aliena, erudito Lectori ſic præmonſtraſſe
<
lb
/>
ſuſſiciat.</
s
>
<
s
xml:id
="
echoid-s6447
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div674
"
type
="
section
"
level
="
1
"
n
="
269
">
<
head
xml:id
="
echoid-head278
"
xml:space
="
preserve
">LEMMA XI. PROP. XXXVIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s6448
"
xml:space
="
preserve
">Si duæ rectæ lineæ inter ſe æquales fuerint, & </
s
>
<
s
xml:id
="
echoid-s6449
"
xml:space
="
preserve
">parallelæ, & </
s
>
<
s
xml:id
="
echoid-s6450
"
xml:space
="
preserve
">
<
lb
/>
ab earum extremis terminis ducantur lineæ quemlibet angulum
<
lb
/>
efficientes, ab alteris autem terminis aliæ ipſis æquidiſtantes;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s6451
"
xml:space
="
preserve
">hæ quoque angulum inter datas conſtituent, & </
s
>
<
s
xml:id
="
echoid-s6452
"
xml:space
="
preserve
">recta angulo-
<
lb
/>
rum vertices coniungens erit vtrique datarum æqualis, & </
s
>
<
s
xml:id
="
echoid-s6453
"
xml:space
="
preserve
">pa-
<
lb
/>
rallela.</
s
>
<
s
xml:id
="
echoid-s6454
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s6455
"
xml:space
="
preserve
">Si verò datæ rectæ lineæ terminatæ ad quemcunque angulum
<
lb
/>
applicatæ fuerint, & </
s
>
<
s
xml:id
="
echoid-s6456
"
xml:space
="
preserve
">vbicunque proportionaliter ſectę, aut pro-
<
lb
/>
ductæ, atque ab homologis earum punctis, hoc eſt, vel ab ex-
<
lb
/>
tremis terminis, vel ab inter-ſectionum, aut productionum pun-
<
lb
/>
ctis, ductæ fuerint intra datum angulum aliæ rectæ lineæ, quæ
<
lb
/>
item angulum quemlibet conſtituant, à reliquis verò punctis aliæ
<
lb
/>
ipſis æquidiſtanter ducantur, hæ pariter tertium angulum effi-
<
lb
/>
cient intra datum, & </
s
>
<
s
xml:id
="
echoid-s6457
"
xml:space
="
preserve
">horum trium angulorum vertices in vna
<
lb
/>
eademque recta linea reperientur.</
s
>
<
s
xml:id
="
echoid-s6458
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s6459
"
xml:space
="
preserve
">SIt, in prima figura, recta A B æqualis, & </
s
>
<
s
xml:id
="
echoid-s6460
"
xml:space
="
preserve
">parallela ad C D, & </
s
>
<
s
xml:id
="
echoid-s6461
"
xml:space
="
preserve
">exter-
<
lb
/>
minis A, C inter eas conſtituatur angulus quicunque A E C ducta-
<
lb
/>
que B F parallela ad A E, D F verò ad C E. </
s
>
<
s
xml:id
="
echoid-s6462
"
xml:space
="
preserve
">Dico B F, D F inter datas
<
lb
/>
æquidiſtantes conuenire, & </
s
>
<
s
xml:id
="
echoid-s6463
"
xml:space
="
preserve
">E F iungentem angulorum vertices, alteri A
<
lb
/>
B, vel C D eſſe æqualem, & </
s
>
<
s
xml:id
="
echoid-s6464
"
xml:space
="
preserve
">parallelam.</
s
>
<
s
xml:id
="
echoid-s6465
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s6466
"
xml:space
="
preserve
">Iungantur A C, B D: </
s
>
<
s
xml:id
="
echoid-s6467
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s6468
"
xml:space
="
preserve
">quoniam B F eſt parallela ad A E, erit angu-
<
lb
/>
lus G B F æqualis angulo B A E; </
s
>
<
s
xml:id
="
echoid-s6469
"
xml:space
="
preserve
">cumque A B ſit æqualis, & </
s
>
<
s
xml:id
="
echoid-s6470
"
xml:space
="
preserve
">parallela </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>