Monantheuil, Henri de, Aristotelis Mechanica, 1599

List of thumbnails

< >
231
231
232
232
233
233
234
234
235
235
236
236
237
237
238
238
239
239
240
240
< >
page |< < of 252 > >|
    <archimedes>
      <text>
        <body>
          <pb xlink:href="035/01/233.jpg" pagenum="193"/>
          <chap>
            <subchap1>
              <p type="main">
                <s id="id.002871">31.
                  <foreign lang="el">*dia\ ti/ oi( a)nista/menoi, ou(/tws
                    <lb/>
                  a)ni/stantai.</foreign>
                </s>
              </p>
              <p type="main">
                <s id="id.002872">31. Cur qui ſurgunt, ſic ſur­
                  <lb/>
                gant. </s>
              </p>
              <p type="main">
                <s id="id.002873">
                  <foreign lang="el">*dia\ ti/ oi( a)nista/menoi pa/ntes pro\s o)cei=an gwni/an tw=|
                    <lb/>
                  mhrw=| poih/santes th\n knh/mhn a)ni/stantai, kai\ tw=| qw/raki
                    <lb/>
                  pro\s to\n mhro/n; ei) de\ mh/, ou)k a)\n du/nainto a)nasth=nai.</foreign>
                </s>
                <s id="g0133002">
                  <foreign lang="el">po/teron
                    <lb/>
                  o(/ti to\ i)/son h)remi/as pantaxou= ai)/tion, h( de\ o)rqh\ gwni/a
                    <lb/>
                  tou= i)/sou, kai\ poiei= sta/sin: dio\ kai\ fe/retai pro\s o(moi/as
                    <lb/>
                  gwni/as th=| periferei/a| th=s gh=s. ou) ga\r o(/ti kai\ pro\s o)rqh\n
                    <lb/>
                  e)/stai tw=| e)pipe/dw|.</foreign>
                </s>
                <s id="g0133003">
                  <foreign lang="el">h)\ o(/ti a)nista/menos gi/netai o)rqo/s, a)na/gkh
                    <lb/>
                  de\ to\n e(stw=ta ka/qeton ei)=nai pro\s th\n gh=n.</foreign>
                </s>
                <s id="g0133004">
                  <foreign lang="el">ei) ou)=n me/llei
                    <lb/>
                  e)/sesqai pro\s o)rqh/n, tou=to de/ e)sti to\ th\n kefalh\n e)/xein
                    <lb/>
                  kata\ tou\s po/das, kai\ gi/nesqai dh\ o(/te a)ni/statai.</foreign>
                </s>
                <s id="g0133005">
                  <foreign lang="el">o(/tan me\n
                    <lb/>
                  ou)=n kaqh/menos h)=|, para/llhlon e)/xei th\n kefalh\n kai\ tou\s
                    <lb/>
                  po/das, kai\ ou)k e)pi\ mia=s eu)qei/as.</foreign>
                </s>
                <s id="g0133006">
                  <foreign lang="el">h( kefalh\ *a e)/stw, qw/rac
                    <lb/>
                  *a*b, mhro\s *b*g, knh/mh *g*d.</foreign>
                </s>
                <s id="g0133007">
                  <foreign lang="el">pro\s o)rqh\n de\ gi/netai
                    <lb/>
                  o(/ te qw/rac [e)f' w(=n *a*b] tw=| mhrw=| kai\ o( mhro\s th=| knh/mh|
                    <lb/>
                  ou(/tws kaqhme/nw|. w(/ste ou(/tws e)/xonta a)du/naton a)nasth=nai.</foreign>
                </s>
                <s id="g0133008">
                  <foreign lang="el">
                    <lb/>
                  a)na/gkh de\ e)gkli=nai th\n knh/mhn kai\ poiei=n tou\s po/das u(po\
                    <lb/>
                  th\n kefalh/n.</foreign>
                </s>
                <s id="g0133009">
                  <foreign lang="el">tou=to de\ e)/stai, e)a\n h( *g*d e)f' h(=s ta\ *g*z
                    <lb/>
                  ge/nhtai, kai\ a(/ma a)nasth=nai sumbh/setai, kai\ e)/xein e)pi\
                    <lb/>
                  th=s au)th=s i)/shs th\n kefalh/n te kai\ tou\s po/das. h( de\ *g*z
                    <lb/>
                  o)cei=an poiei= gwni/an pro\s th\n *b*g.</foreign>
                </s>
              </p>
              <p type="main">
                <s id="id.002874">Cur omnes qui ſurgunt
                  <lb/>
                  <expan abbr="conſtituẽtes">conſtituentes</expan>
                angulum acu­
                  <lb/>
                tum ex femore & tibia,
                  <expan abbr="">tum</expan>
                  <lb/>
                ex thorace & femore ſur­
                  <lb/>
                gant: ſin minus, ſurgere
                  <expan abbr="ne­queũt">ne­
                    <lb/>
                  queunt</expan>
                . </s>
                <s id="id.002875">An quia, quod ęqua
                  <lb/>
                le eſt, quietis vbique cauſa
                  <lb/>
                eſt. </s>
                <s id="id.002876">Angulus autem rectus
                  <lb/>
                eſt æqualitatis, & ſtatum
                  <lb/>
                facit. </s>
                <s id="id.002877">Ideò etiam fertur ad
                  <lb/>
                angulos ſimiles,
                  <expan abbr="">cum</expan>
                ſuperfi­
                  <lb/>
                cie terræ. </s>
                <s id="id.002878">Sic enim erit ipſi
                  <lb/>
                plano ad rectos: vel quod
                  <lb/>
                ſurgens fit rectus. </s>
                <s id="id.002879">Neceſſe
                  <lb/>
                eſt autem ſtantem eſſe per­
                  <lb/>
                pendicularem terræ. </s>
                <s id="id.002880">Si igi­
                  <lb/>
                tur debet eſſe ad rectos.
                  <lb/>
                </s>
                <s id="id.002881">hoc eſt caput habere è di­
                  <lb/>
                recto pedum. </s>
                <s id="id.002882">Etiam quum
                  <lb/>
                ſurgit fieri oportet. </s>
                <s id="id.002883">Quan­
                  <lb/>
                do igitur ſedet caput habet
                  <lb/>
                ad pedes parallelum, & ne­
                  <lb/>
                quaquam in vna recta. </s>
                <s id="id.002884">Sit
                  <lb/>
                caput
                  <foreign lang="el">a,</foreign>
                thorax
                  <foreign lang="el">a b,</foreign>
                fe­
                  <lb/>
                mur
                  <foreign lang="el">b g,</foreign>
                tibiæ
                  <foreign lang="el">g d,</foreign>
                fiat
                  <lb/>
                verò thorax
                  <foreign lang="el">a b</foreign>
                ad rectos
                  <lb/>
                femori, & femur tibiæ ſic
                  <lb/>
                ſedenti. </s>
                <s id="id.002885">Itaque ſic ſe ha­
                  <lb/>
                bentem impoſſibile eſt ſur­
                  <lb/>
                gere. </s>
                <s id="id.002886">At neceſſe eſt incli­
                  <lb/>
                nare tibiam, & conſtitue­
                  <lb/>
                re pedes ſub capite: hoc
                  <lb/>
                autem erit ſi
                  <foreign lang="el">g d</foreign>
                fiat
                  <foreign lang="el">g</foreign>
                </s>
              </p>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>