Monantheuil, Henri de
,
Aristotelis Mechanica
,
1599
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 252
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 252
>
page
|<
<
of 252
>
>|
<
archimedes
>
<
text
>
<
body
>
<
pb
xlink:href
="
035/01/233.jpg
"
pagenum
="
193
"/>
<
chap
>
<
subchap1
>
<
p
type
="
main
">
<
s
id
="
id.002871
">31.
<
foreign
lang
="
el
">*dia\ ti/ oi( a)nista/menoi, ou(/tws
<
lb
/>
a)ni/stantai.</
foreign
>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
id.002872
">31. Cur qui ſurgunt, ſic ſur
<
lb
/>
gant. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
id.002873
">
<
foreign
lang
="
el
">*dia\ ti/ oi( a)nista/menoi pa/ntes pro\s o)cei=an gwni/an tw=|
<
lb
/>
mhrw=| poih/santes th\n knh/mhn a)ni/stantai, kai\ tw=| qw/raki
<
lb
/>
pro\s to\n mhro/n; ei) de\ mh/, ou)k a)\n du/nainto a)nasth=nai.</
foreign
>
</
s
>
<
s
id
="
g0133002
">
<
foreign
lang
="
el
">po/teron
<
lb
/>
o(/ti to\ i)/son h)remi/as pantaxou= ai)/tion, h( de\ o)rqh\ gwni/a
<
lb
/>
tou= i)/sou, kai\ poiei= sta/sin: dio\ kai\ fe/retai pro\s o(moi/as
<
lb
/>
gwni/as th=| periferei/a| th=s gh=s. ou) ga\r o(/ti kai\ pro\s o)rqh\n
<
lb
/>
e)/stai tw=| e)pipe/dw|.</
foreign
>
</
s
>
<
s
id
="
g0133003
">
<
foreign
lang
="
el
">h)\ o(/ti a)nista/menos gi/netai o)rqo/s, a)na/gkh
<
lb
/>
de\ to\n e(stw=ta ka/qeton ei)=nai pro\s th\n gh=n.</
foreign
>
</
s
>
<
s
id
="
g0133004
">
<
foreign
lang
="
el
">ei) ou)=n me/llei
<
lb
/>
e)/sesqai pro\s o)rqh/n, tou=to de/ e)sti to\ th\n kefalh\n e)/xein
<
lb
/>
kata\ tou\s po/das, kai\ gi/nesqai dh\ o(/te a)ni/statai.</
foreign
>
</
s
>
<
s
id
="
g0133005
">
<
foreign
lang
="
el
">o(/tan me\n
<
lb
/>
ou)=n kaqh/menos h)=|, para/llhlon e)/xei th\n kefalh\n kai\ tou\s
<
lb
/>
po/das, kai\ ou)k e)pi\ mia=s eu)qei/as.</
foreign
>
</
s
>
<
s
id
="
g0133006
">
<
foreign
lang
="
el
">h( kefalh\ *a e)/stw, qw/rac
<
lb
/>
*a*b, mhro\s *b*g, knh/mh *g*d.</
foreign
>
</
s
>
<
s
id
="
g0133007
">
<
foreign
lang
="
el
">pro\s o)rqh\n de\ gi/netai
<
lb
/>
o(/ te qw/rac [e)f' w(=n *a*b] tw=| mhrw=| kai\ o( mhro\s th=| knh/mh|
<
lb
/>
ou(/tws kaqhme/nw|. w(/ste ou(/tws e)/xonta a)du/naton a)nasth=nai.</
foreign
>
</
s
>
<
s
id
="
g0133008
">
<
foreign
lang
="
el
">
<
lb
/>
a)na/gkh de\ e)gkli=nai th\n knh/mhn kai\ poiei=n tou\s po/das u(po\
<
lb
/>
th\n kefalh/n.</
foreign
>
</
s
>
<
s
id
="
g0133009
">
<
foreign
lang
="
el
">tou=to de\ e)/stai, e)a\n h( *g*d e)f' h(=s ta\ *g*z
<
lb
/>
ge/nhtai, kai\ a(/ma a)nasth=nai sumbh/setai, kai\ e)/xein e)pi\
<
lb
/>
th=s au)th=s i)/shs th\n kefalh/n te kai\ tou\s po/das. h( de\ *g*z
<
lb
/>
o)cei=an poiei= gwni/an pro\s th\n *b*g.</
foreign
>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
id.002874
">Cur omnes qui ſurgunt
<
lb
/>
<
expan
abbr
="
conſtituẽtes
">conſtituentes</
expan
>
angulum acu
<
lb
/>
tum ex femore & tibia,
<
expan
abbr
="
tũ
">tum</
expan
>
<
lb
/>
ex thorace & femore ſur
<
lb
/>
gant: ſin minus, ſurgere
<
expan
abbr
="
nequeũt
">ne
<
lb
/>
queunt</
expan
>
. </
s
>
<
s
id
="
id.002875
">An quia, quod ęqua
<
lb
/>
le eſt, quietis vbique cauſa
<
lb
/>
eſt. </
s
>
<
s
id
="
id.002876
">Angulus autem rectus
<
lb
/>
eſt æqualitatis, & ſtatum
<
lb
/>
facit. </
s
>
<
s
id
="
id.002877
">Ideò etiam fertur ad
<
lb
/>
angulos ſimiles,
<
expan
abbr
="
cũ
">cum</
expan
>
ſuperfi
<
lb
/>
cie terræ. </
s
>
<
s
id
="
id.002878
">Sic enim erit ipſi
<
lb
/>
plano ad rectos: vel quod
<
lb
/>
ſurgens fit rectus. </
s
>
<
s
id
="
id.002879
">Neceſſe
<
lb
/>
eſt autem ſtantem eſſe per
<
lb
/>
pendicularem terræ. </
s
>
<
s
id
="
id.002880
">Si igi
<
lb
/>
tur debet eſſe ad rectos.
<
lb
/>
</
s
>
<
s
id
="
id.002881
">hoc eſt caput habere è di
<
lb
/>
recto pedum. </
s
>
<
s
id
="
id.002882
">Etiam quum
<
lb
/>
ſurgit fieri oportet. </
s
>
<
s
id
="
id.002883
">Quan
<
lb
/>
do igitur ſedet caput habet
<
lb
/>
ad pedes parallelum, & ne
<
lb
/>
quaquam in vna recta. </
s
>
<
s
id
="
id.002884
">Sit
<
lb
/>
caput
<
foreign
lang
="
el
">a,</
foreign
>
thorax
<
foreign
lang
="
el
">a b,</
foreign
>
fe
<
lb
/>
mur
<
foreign
lang
="
el
">b g,</
foreign
>
tibiæ
<
foreign
lang
="
el
">g d,</
foreign
>
fiat
<
lb
/>
verò thorax
<
foreign
lang
="
el
">a b</
foreign
>
ad rectos
<
lb
/>
femori, & femur tibiæ ſic
<
lb
/>
ſedenti. </
s
>
<
s
id
="
id.002885
">Itaque ſic ſe ha
<
lb
/>
bentem impoſſibile eſt ſur
<
lb
/>
gere. </
s
>
<
s
id
="
id.002886
">At neceſſe eſt incli
<
lb
/>
nare tibiam, & conſtitue
<
lb
/>
re pedes ſub capite: hoc
<
lb
/>
autem erit ſi
<
foreign
lang
="
el
">g d</
foreign
>
fiat
<
foreign
lang
="
el
">g</
foreign
>
</
s
>
</
p
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>