Fabri, Honoré, Tractatus physicus de motu locali, 1646

List of thumbnails

< >
121
121
122
122
123
123
124
124
125
125
126
126
127
127
128
128
129
129
130
130
< >
page |< < of 491 > >|
    <archimedes>
      <text>
        <body>
          <chap id="N1C940">
            <p id="N1CF58" type="main">
              <s id="N1CF78">
                <pb pagenum="202" xlink:href="026/01/234.jpg"/>
              lo CF, retineatur pondus B ne ſcilicet deorſum cadat; </s>
              <s id="N1CF83">tùm ſubtrahatur
                <lb/>
              pondus trianguli CAD; nunquid fortè altera manus ſuſtinebit tantùm
                <lb/>
              ſubduplum ponderis B? & altera ſubduplum? </s>
              <s id="N1CF8B">igitur vt habeatur quod
                <lb/>
              ſuſtinet ſuppoſita dextra v.g. debet ſubſtrahi, quod ſuſtinet ſiniſtra, ſed
                <lb/>
              quod ſuſtinet ſiniſtra, eſt vt ipſa potentia, id eſt vt CA ad CD; igitur
                <lb/>
              tota CD repræſentat totum pondus, ſegmentum CF partem ponderis
                <lb/>
              quæ competit potentiæ E, FD verò partem quæ ſuſtinetur à pla­
                <lb/>
              no CF. </s>
            </p>
            <p id="N1CF9C" type="main">
              <s id="N1CF9E">Hinc facilè poſſet determinari quota pars ponderis incubet plano,
                <lb/>
              ſit enim planum inclinatum AC, perpendiculum AB, accipiatur AB
                <lb/>
              æqualis AB, ſitque AC tripla AB, duæ tertiæ ponderis incubant plano
                <lb/>
              ſi verò ſit horizontale planum, totum pondus grauitat in illud; </s>
              <s id="N1CFA8">nulla eſt
                <lb/>
              enim perpendicularis, ſi ſit perpendiculare planum, nihil prorſus gra­
                <lb/>
              uitat; </s>
              <s id="N1CFB0">quia nulla eſt inclinata, & quò propiùs accedit planum inclina­
                <lb/>
              tum ad horizontalem plùs grauitat pondus in illud, minùs verò; quò
                <lb/>
              propiùs accedit ad perpendicularem. </s>
            </p>
            <p id="N1CFB8" type="main">
              <s id="N1CFBA">Hinc eſſet oppoſita ratio grauitationis, & motus, in plano inclinato; </s>
              <s id="N1CFBE">
                <lb/>
              nam quò plùs eſt grauitationis minùs eſt motus, quò plùs motus, minùs
                <lb/>
              grauitationis; </s>
              <s id="N1CFC5">quando verò planum inclinatum eſt duplum perpendicu­
                <lb/>
              culi vt planum CFD, tunc
                <expan abbr="tantũdem">tantundem</expan>
              detrahitur de grauitatione in
                <lb/>
              planum quantùm de motu in eodem plano; </s>
              <s id="N1CFD1">ideſt vtrique ſubduplum,
                <lb/>
              ſi verò vt in plano ADC perpendiculum eſt ſubtriplum plani, detrahun­
                <lb/>
              tur de motu 2/3 & de grauitatione 1/3, idem dico de aliis, quæ certè omnia
                <lb/>
              ex veris principiis phyſicis conſequi videntur, quò enim plus grauitat
                <lb/>
              mobile in planum, plùs ſuſtinetur; </s>
              <s id="N1CFDD">quò plùs ſuſtinetur, plùs impeditur il­
                <lb/>
              lius motus; </s>
              <s id="N1CFE3">ſed hoc repugnat communi Mechanicorum ſententiæ, qui
                <lb/>
              cenſent grauitationem in planum inclinatum eſſe ad grauitationem in
                <lb/>
              horizontale, vt Tangens eſt ad ſecantem, quæ ſit linea plani inclinati,
                <lb/>
              v.g. vt AB ad CD, quod certè omnes ſupponunt, ſed minimè
                <expan abbr="demon-ſtrãt">demon­
                  <lb/>
                ſtrant</expan>
              , ſi quid video ſaltem phyſicè; </s>
              <s id="N1CFF5">nec enim illud nemonſtrant propriè ex
                <lb/>
              eo quòd pondus in extremitate libræ affixum habeat diuerſa momenta
                <lb/>
              iuxta rationem Tangentium ad ſecantes, v.g. in ſecunda figura Th.5.
                <lb/>
              pondus in D eſt ad pondus in C vt BA ad DA, quod veriſſimum eſt, &
                <lb/>
              ſuprà demonſtrauimus; </s>
              <s id="N1D003">quippe hoc pertinet ad rationem momenti, non
                <lb/>
              verò grauitationis in planum; </s>
              <s id="N1D009">adde quod affixum eſt pondus vecti; </s>
              <s id="N1D00D">igi­
                <lb/>
              tur vectis ſuſtinet totum illius pondus; </s>
              <s id="N1D013">vtrùm verò ſi pondus in plano
                <lb/>
              inclinato veluti in vecte moueatur pondus quo grauitat in planum ſit
                <lb/>
              ad pondus quo grauitat in horizontali vt Tangens ad ſecantem, certè
                <lb/>
              non demonſtrant; </s>
              <s id="N1D01D">attamen ita res prorſus ſe habet; quare fit. </s>
            </p>
            <p id="N1D021" type="main">
              <s id="N1D023">
                <emph type="center"/>
                <emph type="italics"/>
              Theorema
                <emph.end type="italics"/>
              16.
                <emph.end type="center"/>
              </s>
            </p>
            <p id="N1D02F" type="main">
              <s id="N1D031">
                <emph type="italics"/>
              Grauitatio ponderis in planum inclinatum eſt ad grauitationem eiuſdem
                <lb/>
              in planum horizontale, vt Tangens, vel horizontalis ad ſecantem, vel incli­
                <lb/>
              natam,
                <emph.end type="italics"/>
              quod demonſtro. </s>
              <s id="N1D03D">Primò ſit planum inclinatum GD, pondus in-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>