Viviani, Vincenzo, De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei

Table of contents

< >
[211.] Pag. 131. poſt Prop. 84.
[212.] Pag. 144. ad calcem Prop. 93.
[213.] SCHOLIVM.
[214.] Pag. 147. ad finem Prop. 97.
[215.] FINIS.
[216.] DE MAXIMIS, ET MINIMIS GEOMETRICA DIVINATIO In Qvintvm Conicorvm APOLLONII PERGÆI _IAMDIV DESIDERATVM._ AD SER ENISSIMVM PRINCIPEM LEOPOLDVM AB ETRVRIA. LIBER SECVNDVS. _AVCTORE_ VINCENTIO VIVIANI.
[217.] FLORENTIÆ MDCLIX. Apud Ioſeph Cocchini, Typis Nouis, ſub Signo STELLÆ. _SVPERIORVM PERMISSV._
[218.] SERENISSIMO PRINCIPI LEOPOLODO AB ETRVRIA.
[219.] VINCENTII VIVIANI DE MAXIMIS, ET MINIMIS Geometrica diuinatio in V. conic. Apoll. Pergæi. LIBER SECVNDVS. LEMMA I. PROP. I.
[220.] LEMMA II. PROP. II.
[221.] THEOR. I. PROP. III.
[222.] LEMMA III. PROP. IV.
[223.] THEOR. II. PROP. V.
[224.] THEOR. III. PROP. VI.
[225.] LEMMA IV. PROP. VII.
[226.] THEOR. IV. PROP. VIII.
[227.] THEOR. V. PROP. IX.
[228.] SCHOLIVM.
[229.] THEOR. VI. PROP. X.
[230.] THEOR. VII. PROP. XI.
[231.] THEOR. VIII. PROP. XII.
[232.] THEOR. IX. PROP. XIII.
[233.] THEOR. X. PROP. XIV.
[234.] THEOR. XI. PROP. XV.
[235.] LEMMA V. PROP. XVI.
[236.] COROLL.
[237.] THEOR. XII. PROP. XVII.
[238.] THEOR. XIII. PROP. XVIII.
[239.] THEOR. XIV. PROP. XIX.
[240.] PROBL. I. PROP. XX.
< >
page |< < (55) of 347 > >|
23955 per M applicetur recta N M O, quæ applicatæ E G F æquidiſtabit.
Iam, in prima figura, cum ſit B D parallela ad I M, & B I ad D M, erit
diametri ſegmentum B D æquale diametri ſegmento I M;
ſuntque ex D, M
applicatæ diametris rectæ A D C, N M O, vnde portiones A B C, N I O
æquales erunt.
1140. h. 197[Figure 197]
In reliquis verò, cum in triangulo D H M ſit B I parallela ad D M, erit
H B ad B D, vt H I ad I M, ſuntque ex D, M applicatæ diametris rectæ
A D C, N M O, quare portiones A B C, N I O æquales erunt.
Cum 22ibidem. go in ſingulis figuris portio A B C demonſtrata ſit æqualis portioni N I O,
&
ſit portio N I O minor portione E I F, pars toto, ergo portio A B C erit
quoque minor portione E I F, &
ſic quacunque alia portione, ab applicata
per D abſciſſa, minor demonſtrabitur.
Vnde portio A B C eſt _MINIMA_
quæſita.
Quod faciendum erat.
COROLL.
HInc eſt, quod dum per datum punctum D intra Ellipſim, ducitur appli-
cata A D C _MINIMAM_ portionem abſcindes, habetur ſimul _MA_-
_XIMA_ portio, quæ eſt reliqua A P C, vt per ſe ſatis conſtat.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index