Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 241]
[Figure 242]
[Figure 243]
[Figure 244]
[Figure 245]
[Figure 246]
[Figure 247]
[Figure 248]
[Figure 249]
[Figure 250]
[Figure 251]
[Figure 252]
[Figure 253]
[Figure 254]
[Figure 255]
[Figure 256]
[Figure 257]
[Figure 258]
[Figure 259]
[Figure 260]
[Figure 261]
[Figure 262]
[Figure 263]
[Figure 264]
[Figure 265]
[Figure 266]
[Figure 267]
[Figure 268]
[Figure 269]
[Figure 270]
< >
page |< < (203) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div684" type="section" level="1" n="228">
          <pb o="203" file="0241" n="241" rhead="Conicor. Lib. VI."/>
          <figure number="274">
            <image file="0241-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0241-01"/>
          </figure>
        </div>
        <div xml:id="echoid-div693" type="section" level="1" n="229">
          <head xml:id="echoid-head289" xml:space="preserve">Notæ in Propoſit. XXI.</head>
          <p style="it">
            <s xml:id="echoid-s7622" xml:space="preserve">QVoniam G B ad B I, ſuppoſita eſt vt H E ad E K, &</s>
            <s xml:id="echoid-s7623" xml:space="preserve">c. </s>
            <s xml:id="echoid-s7624" xml:space="preserve">Quia L B
              <lb/>
              <note position="left" xlink:label="note-0241-01" xlink:href="note-0241-01a" xml:space="preserve">a</note>
            ad B G ex bypotheſi erat, vt M E ad E H, & </s>
            <s xml:id="echoid-s7625" xml:space="preserve">inuertendo G B ad B I
              <lb/>
            erat vt H E ad E K; </s>
            <s xml:id="echoid-s7626" xml:space="preserve">ergo ex æqualitate L B ad B I erit vt M E
              <lb/>
            ad E K; </s>
            <s xml:id="echoid-s7627" xml:space="preserve">& </s>
            <s xml:id="echoid-s7628" xml:space="preserve">per conuerſionem rationis B L ad L I erit vt E M ad M K.</s>
            <s xml:id="echoid-s7629" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s7630" xml:space="preserve">Et propter ſimilitudinem duarum ſectionum N L ad A I, nempe L O
              <lb/>
              <note position="left" xlink:label="note-0241-02" xlink:href="note-0241-02a" xml:space="preserve">b</note>
            ad O I eſt, vt P M ad F K, nempe M Q ad Q K, &</s>
            <s xml:id="echoid-s7631" xml:space="preserve">c. </s>
            <s xml:id="echoid-s7632" xml:space="preserve">Quoniam duæ ſe-
              <lb/>
            ctiones N B, & </s>
            <s xml:id="echoid-s7633" xml:space="preserve">P E ſimiles ſuppoſitæ ſunt, & </s>
            <s xml:id="echoid-s7634" xml:space="preserve">axiũ abſciſſæ L B, M E, nec non
              <lb/>
            I B, K E ad latera recta B G,
              <lb/>
              <figure xlink:label="fig-0241-02" xlink:href="fig-0241-02a" number="275">
                <image file="0241-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0241-02"/>
                <caption xml:id="echoid-caption1" xml:space="preserve">Cc 2</caption>
              </figure>
            & </s>
            <s xml:id="echoid-s7635" xml:space="preserve">H E proportionales ſunt;</s>
            <s xml:id="echoid-s7636" xml:space="preserve"> igitur N L ad A I eandem
              <note position="right" xlink:label="note-0241-03" xlink:href="note-0241-03a" xml:space="preserve">ex 12.
                <lb/>
              huius.</note>
            portionem habebit, quàm P M ad D K: </s>
            <s xml:id="echoid-s7637" xml:space="preserve">& </s>
            <s xml:id="echoid-s7638" xml:space="preserve">quia triangula N L O, & </s>
            <s xml:id="echoid-s7639" xml:space="preserve">A I O ſimilia ſunt pro- pter parallelas N L, & </s>
            <s xml:id="echoid-s7640" xml:space="preserve">I A, pariterque triangula P M Q,& </s>
            <s xml:id="echoid-s7641" xml:space="preserve">D K Q ſimilia ſunt; </s>
            <s xml:id="echoid-s7642" xml:space="preserve">igitur L O ad O I erit vt N L ad I A; </s>
            <s xml:id="echoid-s7643" xml:space="preserve">pariterque M Q ad Q K erit vt P M ad D I, ſeu vt N L ad A I: </s>
            <s xml:id="echoid-s7644" xml:space="preserve">& </s>
            <s xml:id="echoid-s7645" xml:space="preserve">propterea L O ad O I erit vt M Q ad QK.</s>
            <s xml:id="echoid-s7646" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s7647" xml:space="preserve">Et ex æqualitate L O ad
              <lb/>
              <note position="left" xlink:label="note-0241-04" xlink:href="note-0241-04a" xml:space="preserve">c</note>
            L B erit vt Q M ad M E, ſed
              <lb/>
            L B ad L N eſt vt M E ad
              <lb/>
            M P, cum ex ſuppoſitione
              <lb/>
            ſectiones ſint ſimiles, &</s>
            <s xml:id="echoid-s7648" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>