Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
241
241
242
242
243
243
244
244
245
245
246
246
247
247
248
248
249
249
250
250
< >
page |< < of 524 > >|
1ris, decreſcet recta DCin ratione Geometrica ad modum veloci­
tatis, & partes rectæ ACæqualibus temporibus deſcriptæ decre­
ſcent in eadem ratione.
LIBER
SECUNDUS.
PROPOSITIO III. PROBLEMA I.
Corporis, cui dum in Medio ſimilari recta aſcendit vel deſcendit,
reſiſtitur in ratione velocitatis, quodque ab uniformi gravitate
urgetur, definire motum.
Corpore aſcendente, ex­
142[Figure 142]
ponatur gravitas per datum
quodvis rectangulum BC,&
reſiſtentia Medii initio aſ­
cenſus per rectangulum BD
ſumptum ad contrarias par­
tes.
Aſymptotis rectangulis
AC, CH,per punctum Bde­
ſcribatur Hyperbola ſecans per­
pendicula DE, dein G, g;&
corpus aſcendendo, tempore DGgd,deſcribet ſpatium EGge,tem­
pore DGBAſpatium aſcenſus totius EGB; tempore AB2G2D
ſpatium deſcenſus BF2G,atque tempore 2D2G2g2dſpatium
deſcenſus 2GF2e2g: & velocitates corporis (reſiſtentiæ Medii
proportionales) in horum temporum periodis erunt ABED,
ABed,nulla, ABF2D, AB2e2dreſpective; atque maxima
velocitas, quam corpus deſcendendo poteſt acquirere, erit BC.
Reſolvatur enim rectan­
143[Figure 143]
gulum AHin rectangula
innumera Ak, Kl, Lm, Mn,
&c.
quæ ſint ut incrementa
velocitatum æqualibus tot­
idem temporibus facta; & e­
runt nihil, Ak, Al, Am, An,
&c.
ut velocitates totæ, at­
que adeo (per Hypotheſin)
ut reſiſtentiæ Medii princi­
pio ſingulorum temporum
æqualium.
Fiat ACad AKvel ABHCad ABkK,ut vis gra­
vitatis ad reſiſtentiam in principio temporis ſecundi, deque vi gravi-

Text layer

  • Dictionary
  • Places

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index