Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
241
241
242
242
243
243
244
244
245
245
246
246
247
247
248
248
249
249
250
250
< >
page |< < of 524 > >|
1
Corol.1. Eſt igitur Rræqualis (DRXAB/N)-(RDGT/N), ideoque
ſi producatur RTad Xut ſit RXæqualis (DRXAB/N), (id eſt, ſi
compleatur parallelogrammum ACPY,jungatur DYſecans CP
in Z,& producatur RTdonec occurrat DYin X;) erit Xræqua­
lis (RDGT/N), & propterea tempori proportionalis.
LIBER
SECUNDUS.
Corol.2. Unde ſi capiantur innumeræ CRvel, quod perinde eſt,
innumeræ ZX,in progreſſione Geometrica; erunt totidem Xrin
progreſſione Arithmetica.
Et hinc Curva DraFper tabulam Lo­
garithmorum facile delineatur.
Corol.3. Si vertice D,diametro DEdeorſum producta, & La­
tere recto quod ſit ad 2DPut reſiſtentia tota, ipſo motus initio,
ad vim gravitatis, Parabola conſtruatur: velocitas quacum corpus
exire debet de loco Dſecundum rectam DP,ut in Medio uNI­
formi reſiſtente deſcribat Curvam DraF,ea ipſa erit quacum ex­
ire debet de eodem loco D,ſecundum eandem rectam DP,ut
in ſpatio non reſiſtente deſcribat Parabolam.
Nam Latus re­
ctum Parabolæ hujus, ipſo motus initio, eſt (DVquad./Vr) & Vr
eſt (tGT/N) ſeu (DRXTt/2N). Recta autem quæ, ſi duceretur, Hy­
perbolam GTBtangeret in G,parallela eſt ipſi DK,ideoque
Tteſt (CKXDR/DC) & N erat (QBXDC/CP). Et propterea Vreſt
(DRqXCKXCP/2DCqXQB), id eſt, (ob proportionales DR& DC, DV
& DP) (DVqXCKXCP/2DPqXQB), & Latus rectum (DVquad./Vr) prodit
(2DPqXQB/CKXCP), id eſt (ob proportionales QB& CK, DA& AC)
(2DPqXDA/ACXCP), adeoque ad 2 DP,ut DPXDAad CPXAC; hoc
eſt, ut reſiſtentia ad gravitatem. Q.E.D.
Corol.4. Unde ſi corpus de loco quovis D,data cum velocitate,
ſecundum rectam quamvis poſitione datam DPprojiciatur; & re­
ſiſtentia Medii ipſo motus initio detur: inveniri poteſt Curva
DraF,quam corpus idem deſcribet. Nam ex data velocitate

Text layer

  • Dictionary
  • Places

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index