Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/246.jpg
"
pagenum
="
218
"/>
<
arrow.to.target
n
="
note194
"/>
datur latus rectum Parabolæ, ut
<
lb
/>
notum eſt. </
s
>
<
s
>Et ſumendo 2
<
emph
type
="
italics
"/>
DP
<
emph.end
type
="
italics
"/>
<
lb
/>
ad latus illud rectum, ut eſt vis
<
lb
/>
gravitatis ad vim reſiſtentiæ,
<
lb
/>
datur
<
emph
type
="
italics
"/>
DP.
<
emph.end
type
="
italics
"/>
Dein ſecando
<
emph
type
="
italics
"/>
DC
<
emph.end
type
="
italics
"/>
<
lb
/>
in
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ut ſit
<
emph
type
="
italics
"/>
CPXAC
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
DPXDA
<
emph.end
type
="
italics
"/>
in eadem illa rati
<
lb
/>
one gravitatis ad reſiſtentiam,
<
lb
/>
dabitur punctum
<
emph
type
="
italics
"/>
A.
<
emph.end
type
="
italics
"/>
Et inde
<
lb
/>
datur Curva
<
emph
type
="
italics
"/>
DraF.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note194
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
5. Et contra, ſi datur
<
lb
/>
<
figure
id
="
id.039.01.246.1.jpg
"
xlink:href
="
039/01/246/1.jpg
"
number
="
147
"/>
<
lb
/>
Curva
<
emph
type
="
italics
"/>
DraF,
<
emph.end
type
="
italics
"/>
dabitur & ve
<
lb
/>
locitas corporis & reſiſtentia
<
lb
/>
Medii in locis ſingulis
<
emph
type
="
italics
"/>
r.
<
emph.end
type
="
italics
"/>
Nam
<
lb
/>
ex data ratione
<
emph
type
="
italics
"/>
CPXAC
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
DPXDA,
<
emph.end
type
="
italics
"/>
datur tum reſiſten
<
lb
/>
tia Medii ſub initio motus, tum
<
lb
/>
latus rectum Parabolæ: & inde
<
lb
/>
datur etiam velocitas ſub initio
<
lb
/>
motus. </
s
>
<
s
>Deinde ex longitudine
<
lb
/>
tangentis
<
emph
type
="
italics
"/>
rL,
<
emph.end
type
="
italics
"/>
datur & huic
<
lb
/>
proportionalis velocitas, & ve
<
lb
/>
locitati proportionalis reſiſten
<
lb
/>
tia in loco quovis
<
emph
type
="
italics
"/>
r.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
6. Cum autem longitu
<
lb
/>
do 2
<
emph
type
="
italics
"/>
DP
<
emph.end
type
="
italics
"/>
ſit ad latus rectum
<
lb
/>
Parabolæ ut gravitas ad reſiſtentiam in
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
; & ex aucta velocitate
<
lb
/>
augeatur reſiſtentia in eadem ratione, at latus rectum Parabolæ au
<
lb
/>
geatur in ratione illa duplicata: patet longitudinem 2
<
emph
type
="
italics
"/>
DP
<
emph.end
type
="
italics
"/>
augeri
<
lb
/>
in ratione illa ſimplici, adeoque velocitati ſemper proportionalem
<
lb
/>
eſſe, neque ex angulo
<
emph
type
="
italics
"/>
CDP
<
emph.end
type
="
italics
"/>
mutato augeri vel minui, niſi mu
<
lb
/>
tetur quoque velocitas. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
7. Unde liquet methodus determinandi Curvam
<
emph
type
="
italics
"/>
DraF
<
emph.end
type
="
italics
"/>
<
lb
/>
ex Phænomenis quamproxime, & inde colligendi reſiſtentiam &
<
lb
/>
velocitatem quacum corpus projicitur. </
s
>
<
s
>Projiciantur corpora duo
<
lb
/>
ſimilia & æqualia eadem cum velocitate, de loco
<
emph
type
="
italics
"/>
D,
<
emph.end
type
="
italics
"/>
ſecundum
<
lb
/>
angulos diverſos
<
emph
type
="
italics
"/>
GDP, cDp
<
emph.end
type
="
italics
"/>
(minuſcularum literarum locis ſub
<
lb
/>
intellectis) & cognoſcantur loca
<
emph
type
="
italics
"/>
F, f,
<
emph.end
type
="
italics
"/>
abi incidunt in horizontale
<
lb
/>
planum
<
emph
type
="
italics
"/>
DC.
<
emph.end
type
="
italics
"/>
Tum, aſſumpta quacunque longitudine pro
<
emph
type
="
italics
"/>
DP
<
emph.end
type
="
italics
"/>
<
lb
/>
vel
<
emph
type
="
italics
"/>
Dp,
<
emph.end
type
="
italics
"/>
fingatur quod reſiſtentia in
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
ſit ad gravitatem in ra-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>