Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 251]
[Figure 252]
[Figure 253]
[Figure 254]
[Figure 255]
[Figure 256]
[Figure 257]
[Figure 258]
[Figure 259]
[Figure 260]
[Figure 261]
[Figure 262]
[Figure 263]
[Figure 264]
[Figure 265]
[Figure 266]
[Figure 267]
[Figure 268]
[Figure 269]
[Figure 270]
[Figure 271]
[Figure 272]
[Figure 273]
[Figure 274]
[275] Cc 2
[Figure 276]
[Figure 277]
[Figure 278]
[Figure 279]
[Figure 280]
< >
page |< < (213) of 458 > >|
251213Conicor. Lib. VI. H O cadent puncta T, & V infra centrum L; & P vlterius tendit quàm Q ad
partes, eiuſdem centri L.
igitur in tali caſit quatuor æquidiſtantium duæ P E,
11Def. add. T X vlterius tendent ad partes centri, &
asymptoti L M, quàm duæ aliæ æqui-
diſtantes Q F, V Z.
Quando verò B E, & C F cadunt vltra centra H, &
L in productionibus æquidiſtantium asymptotorum G H, K L:
quia N P cadit
290[Figure 290] ſupra, &
L f infra centrũ H, ergo in parallelogrammo P f recta N f, ſeu ei æ-
qualis L P maior erit quàm N H:
facta autem fuit L T æqualis H N; igitur
L T minor eſt, quàm L P;
Eadem ratione L V minor erit, quàm L Q, at-
que P vlterius tendit quàm Q ad partes centri L, &
ab ijſdem punctis caden-
tibus ſupra centrum L in productione asymptoti K L ducuntur quatuor rectæ
lineæ inter ſe æquidiſtantes vſque ad hyperbolen D Z;
igitur duæ P E, T X vl-
22Ibidem. terius tendunt ad partes centri, vel asymptoti L M, quàm duæ Q F, V Z.
Secetur poſtea P a æqualis N B, atque Q b æqualis O C. Et quia T X æqua-
lis oſtenſa fuit N B erit P a æqualis ipſi T X;
eſtque P E maior quàm T X;
33Coroll.
Propoſ. 2.
addit.
propterea quod illa vlterius tendit ad partes cẽtri L, quàm T X;
igitur P E ma-
ior erit, quàm P a, &
earum differentia erit E a. Simili modo oſtendetur Q
b æqualis V Z, &
minor quàm Q F, quarum differentia F b: cumque Q P
æqualis ſit ipſi N O, propterea quod ſunt latera oppoſita eiuſdem parallelogram-
mi;
igitur T V, quæ oſtenſa fuit æqualis O N erit quoque æqualis Q P, & sũ-
pta communiter Q T erit Q V æqualis T P, atque à terminis æqualium ſeg-
mentorum eiuſdem asymptoti L K ducuntur vſque ad hyperbolen E Z quatuor
rectæ lineæ inter ſe æquidiſtantes, &
earum binæ P E, T X vlterius tendunt
ad partes centri, &
asymptoti L M, quàm binæ Q F, V Z; igitur differentia
44Propoſ. 2.
addit.
priorum, ſcilicet E a maior erit poſteriorum differentia F b;
eſtque B a æqua-
lis N P, propterea quod æqualibus N B, &
P a ponitur communiter B P; pa-
riterque O Q æqualis eſt C b;
ſuntque N P, & O Q æquales inter ſe, nempe
latera oppoſita eiuſdem parallelogrammi;
igitur B a, & C b æquales ſunt inter
ſe:
ijs verò adduntur exceßus inæquales E a, F b efficietur E B vlterius ten-
dens ad partes asymptoti H I maior, quàm F C.
Quod erat primum.
Tertio ijſdem poſitis N E, O F ſint parallelæ alicui rectæ lineæ H g diuidẽti
angulum L H G, &
propterea extensæ productionem asymptoti M L

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index