Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
251
252
253
254
255
256
257
258
259
260
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/253.jpg
"
pagenum
="
225
"/>
dignitatum A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
4
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
1/2
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
1/3
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
1/3
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
2/3
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
-1
<
emph.end
type
="
sup
"/>
, A
<
emph
type
="
sup
"/>
-2
<
emph.end
type
="
sup
"/>
, & A
<
emph
type
="
sup
"/>
-1/2
<
emph.end
type
="
sup
"/>
momenta </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
note201
"/>
2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A, 3
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
, 4
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
, 1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-1/2
<
emph.end
type
="
sup
"/>
, 3/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
1/2
<
emph.end
type
="
sup
"/>
, 1/3
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-2/3
<
emph.end
type
="
sup
"/>
, 2/3
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-1/3
<
emph.end
type
="
sup
"/>
, -
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-2
<
emph.end
type
="
sup
"/>
,
<
lb
/>
-2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-3
<
emph.end
type
="
sup
"/>
, & -1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
-1/2
<
emph.end
type
="
sup
"/>
reſpective. </
s
>
<
s
>Et generaliter, ut dignitatis
<
lb
/>
cujuſcunque A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n/m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
momentum fuerit
<
emph
type
="
italics
"/>
n/m a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
(
<
emph
type
="
italics
"/>
n-m/m
<
emph.end
type
="
italics
"/>
)
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>Item ut Genitæ
<
lb
/>
A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
B momentum fuerit 2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
AB+
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
; & Genitæ A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
4
<
emph.end
type
="
sup
"/>
C
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
momen
<
lb
/>
tum 3
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
4
<
emph.end
type
="
sup
"/>
C
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
+4
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
C
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
+2
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
4
<
emph.end
type
="
sup
"/>
C; & Genitæ (A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
/B
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
) ſi
<
lb
/>
ve A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
-2
<
emph.end
type
="
sup
"/>
momentum 3
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
-2
<
emph.end
type
="
sup
"/>
-2
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
B
<
emph
type
="
sup
"/>
-3
<
emph.end
type
="
sup
"/>
: & ſic in cæteris. </
s
>
<
s
>
<
lb
/>
Demonſtratur vero Lemma in hunc modum. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note201
"/>
LIBER
<
lb
/>
SECUNDUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
1. Rectangulum quodvis motu perpetuo auctum AB,
<
lb
/>
ubi de lateribus A & B deerant momentorum dimidia 1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
& 1/2
<
emph
type
="
italics
"/>
b,
<
emph.end
type
="
italics
"/>
<
lb
/>
fuit A-1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
in B-1/2
<
emph
type
="
italics
"/>
b,
<
emph.end
type
="
italics
"/>
ſeu AB-1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
B-1/2
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A+1/4
<
emph
type
="
italics
"/>
ab
<
emph.end
type
="
italics
"/>
; & quam pri
<
lb
/>
mum latera A & B alteris momentorum dimidiis aucta ſunt, eva
<
lb
/>
dit A+1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
in B+1/2
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
ſeu AB+1/2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
B+1/2
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A+1/4
<
emph
type
="
italics
"/>
ab.
<
emph.end
type
="
italics
"/>
De hoc rectan
<
lb
/>
gulo ſubducatur rectangulum prius, & manebit exceſſus
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
B+
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A. </
s
>
<
s
>
<
lb
/>
Igitur laterum incrementis totis
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
generatur rectanguli incre
<
lb
/>
mentum
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
B+
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
2. Ponatur AB ſemper æquale G, & contenti ABC ſeu
<
lb
/>
GC momentum (per Cas. </
s
>
<
s
>1.) erit
<
emph
type
="
italics
"/>
g
<
emph.end
type
="
italics
"/>
C+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
G, id eſt (ſi pro G &
<
emph
type
="
italics
"/>
g
<
emph.end
type
="
italics
"/>
<
lb
/>
ſcribantur AB &
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
B+
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A)
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
BC+
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
AC+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
AB. </
s
>
<
s
>Et par eſt ra
<
lb
/>
tio contenti ſub lateribus quotcunque.
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
3. Ponantur latera A, B, C ſibi mutuo ſemper æqualia; &
<
lb
/>
ipſius A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
, id eſt rectanguli AB, momentum
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
B+
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A erit 2
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A, ip
<
lb
/>
ſius autem A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
, id eſt contenti ABC, momentum
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
BC+
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
AC
<
lb
/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
AB erit 3
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>Et eodem argumento momentum dignitatis
<
lb
/>
cujuſcunque A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
eſt
<
emph
type
="
italics
"/>
na
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1.
<
emph.end
type
="
sup
"/>
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
4. Unde cum 1/A in A ſit 1, momentum ipſius 1/A ductum
<
lb
/>
in A, una cum 1/A ducto in
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
erit momentum ipſius 1, id eſt, NI
<
lb
/>
hil. </
s
>
<
s
>Proinde momentum ipſius 1/A ſeu ipſius A
<
emph
type
="
sup
"/>
-1
<
emph.end
type
="
sup
"/>
eſt (-
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
). Et ge
<
lb
/>
neraliter cum (1/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
) in A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
ſit 1, momentum ipſius (1/A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
) ductum in A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>